Oracle9i OLAP

User’s Guide

Release 2 (9.2.0.2)

Sept 2002
Part No. A95295-02

ORACLE

Oracle9i OLAP User’s Guide, Release 2 (9.2.0.2)
Part No. A95295-02
Copyright © 2001, 2002 Oracle Corporation. All rights reserved.

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Oracle9i, Express, PL/SQL, and SQL*Plus are trademarks or
registered trademarks of Oracle Corporation. Other names may be trademarks of their respective
owners.

Contents

Send US YOUr COMMENES ...t eeneen XXi
PIEIACE ...ttt XXiii
AN o 1= VLI T O OTTRR PO XXiV
OrganizZation........ccueuiuiiiiiiiiiicieee s XXiv
J RS X C<Te B D1 Ya1 BN 1 1<) 1715 (o) o KU XXViii
(@03 4 T£=1 015 o) 4 1 T0RTRRE SRR XXiX
Documentation Accessibility ..o XXXii
What's NeW in OracCle OLAP? ..ottt XxXxiii
Oracle9i Release 2 (9.2) New Features in Oracle OLAP........cccovineiiinnieininineneneieseeeeene XXXV

Part| The Basics

1 Overview

WRY OLAP? ..ot 1-2
Analytical Processing Answers Business QUEeSHONS............cccovveviveiiiiiiiicininine, 1-2
Types of OLAP APPLICAtIONSccuiviiiiiiiiiiiiiiciiicicicrcccc e 1-3

Analytical REPOItING........covviviiiviiiiiiiiiieccc s 1-3
Predictive ANALYSiS.......coviiiiiiiiiiee s 1-3

The Oracle9i Integrated Relational-Multidimensional Database.............cccccccocciiinnciinnnes 1-4

Components 0f Oracle OLAP ...ttt es e se e senes 1-5
Calculation ENGINec.cooviiiiiiiiiiic s 1-6
ANAlytic WOTKSPACEcoviiiiiiiiiiii s 1-6

OLAP DML ...ttt ettt ettt s et s et bbb en e neanenenes 1-6

SQL Table FUNCLIONS ...c.vocveiiiciieieeeete ettt ettt ve ettt sae et ae et beevaesbaesaesaeensenseensenseenns 1-7
OLAP AP ..o 1-7
OLAP Catalogcevevimiiiiieiitiicicicieiceee s 1-8
Applications Access to Oracle OLAP...........ccccocoviiiiiiiiniiiiiii s 1-8

Manipulating Multidimensional Data

What Is the OLAP DML?........cccoiiiiiiiiiiiiii s 2-2
Extensive Analytic Capabilities ... 2-2
Features of the Multidimensional Model.............cccccciiiiiiiiiiiiiniiie 2-3

Basic Categories of OLAP DML Commands..............ccccoiiiiiiiiiiiiccnceeenennes 2-4
AGETEZATIONvvieiictete b 2-4
ATLOCATION ..ot st 2-4
Data SELECHION ..ottt 2-5
Data EXCRANGE........coiiiiiiiiiiiciiccc s 2-5
File Reading and WIItINg.........cccccooiiiiiiiiiiiiiicc s 2-5
Financial Operations ... s 2-6
Forecasts and ReIeSSIONScccuiieieiiiiiiiiieiiicicieeese s 2-6
IMOAELS ...t 2-7
Numeric ComMPULAtIONScovvviviiiiiiiicc e 2-7
Statistical OPerations..........cociiiiiiiiiiiiiiiic s 2-8
Text Manipulation ... 2-8
Time Series Manipulation...........cccccciiiiiiiiiiiiiii s 2-8

Methods of Executing OLAP DML Commandscccccceeininiiiininiiiiiinccccneeenes 2-8
OLAP Worksheet: The OLAP DML Development Tool..........c.cccccceiiiiiiiiiiiiiiiicnne, 2-9

Procedure: Open OLAP WOrksheet...........ccccoooiiiiiiiniiiiiicccc s 2-9
Embedding OLAP DML Commands in Programs..........ccccceevenieieieieneeiseeeeeenne 2-9

Developing OLAP Applications

Building SQL-Based OLAP Applications...........cccccooiiiiiininiiiiiniinccceae 3-2
Methods of Accessing Multidimensional Data From SQLcccocoooiiiiiiiien, 3-3
Embedding OLAP DML Commands in SQLccccccceiiiiiiiiiiiiiceeees 3-4

Building Analytical Java Applications............cccoviiiiiiiiiiii 3-4
ADOUL JAVA 1ttt ettt ettt ettt ettt s et e st e st e bt eae s b e e besse st et et et et enteneeneeseeneaee 3-4
Deploying Java APPLCAtioNScocoiiiiiiiiiiiiiiic s 3-5

The Java SoIution fOr OLAP ..ottt 3-6

Oracle Java Development ENvironment..........c.oooeeiioiiiiiniiiceeeccc s 3-6
Introducing the BI Beans............cccoooiiiiniiiiiiiii s 3-7
Thick-Client Configurationcocoevviiiiiii s 3-7
Thin-Client Configuration...........cccccceciiiiiiiiiiiiii s 3-9
1Y 15 =T = Y - TSRS 3-10
Runtime RePOSITOTYcccoviuiuiiiiiiiiiiicccc s 3-10
NAVIZATION 1.ttt s 3-10
FOImMattingcooveveeiieeeice s 3-10
GIAPRS ..o s 3-11
CLOSSTADS ..ttt ettt ettt e s ettt e et e et et e e aeeebeeabesbeeatebe e b e beeraesreenteereeatenreenns 3-11
17 o) LTSRS 3-11
OLADP BI BEANS....cuutiiiiiciiieieeitecieeite ettt s vttt e teesteestessbaessaeesseessse e ssesssassseesssessseesssesssasnseeans 3-12
WIZATAS ..ottt ettt ettt e et et e et b et e et e sseesaeeaeesbeebeebesbaesbeesaesteeneenteereereenreans 3-12
Understanding the OLAP APL.........ccccooiiiniiiiiiiiii s 3-12
How the OLAP API Accesses Multidimensional Data.........cccccocoveeieieneeiecieececeereerenene 3-13
Intelligent Caching ..o 3-15
Calculation Capabilities...........cooviiviiiiiiiii e 3-15

Designing Your Da tabase for OLAP

OVEIVIEW ...ttt ettt ete st et e tee st e st e s se s e et esseestesseessesseessesseessasseessasssessanseassaaseessenseensesssansenseessensens 4-2
Preparing a Database for the OLAP APIL...........ccccccccoiiiiiiccs 4-2
Types of Data Stored in a Data Warehouse ..., 4-3
) TS (0 ol 1 N I - - TSP 4-3
DEIIVEA DALA ..ottt ettt ettt et e et b ra e te et et e et e te et e eaeenteereenteerean 4-4
IMELAAALA ..ovveceieiicieete ettt ettt ettt et et et e s ae e b e e e et e ere e beetb et e eabanbe e e e ereenaeeaeenbeerean 4-4
Data Structures in Relational and Multidimensional Data Stores.............cccecvevvecvereeceenenen. 4-4
Relational Table Storage ... 4-4
Multidimensional Table Storageccccccoeviiiiiiiininiiiiii e 4-5
Temporary and Persistent Analytic Workspaces............cocoeeviiieieiiiiiiinnie, 4-5
About Star, Snowflake, Parent-Child, and Multidimensional Schemas............c.cccvveevenene... 4-6
Choosing a Schema for Your Dataccccccvuiviiiiininiiiiiiiccccc e 4-7
OLAP Metadata MOdelcooviiieiiieieiieeetee sttt e ettt e s se e s e ese e s e seesaesssessesssensessens 4-8
Mapping Data Objects to Metadata ObjJectscccoveiriiieiiieiiiiiee e 4-8
IMLEASULTESeveeiveeniieeieeeteetteeteeteesteeete e tteasseasseessse e saesssaessaasaeessaeasseesssesssaassaeassesnsennssensseanseesseenn 4-9

vi

DDIINIEIISIONIS «.vvveieeeeiiiteee ettt ettt eeetee e eeet e e eee e e e e e eetaaaeeeeerasasaeeeeenstaeseeesansssseeesanssereseeeants 4-10

TIME DIMENSIONS ...ecuvvieiieeieeieeite et eett e te et este et e e rteebe e sbeesseesseesseenseesssaesseesssesnseenssenssenn 4-10
Hierarchical DIimenSionsccceeieieriieienieesiesieseeseetesteeteieseesseeree e seessesssessesseessesseenes 4-13
ATEIIDULES ..veeeieeeeceee ettt ettt ettt e st e st e st e s e ese e s e st e seessesseessenseeneenseeneesseenses 4-14
LeVel AHIIDULESoovieiieieeeeteeee ettt ettt et ettt sbeesaeabeesaenseeseenns 4-14
Dimension AIIDULES.......cccvvivieieieiec et eaeenes 4-14
CUDES ...ttt et et e bt e e e s beeta e s beeabeete e s b et e eas e seeseesseessesbeessenbeenbessaeseeseseas 4-14
MEASUTE FOLAETS......oocveiiiiiieeceee ettt ettt et ettt s ae b e e e besbs e s e essenseeaeenns 4-15

Creating OLAP Catalog Metadata

Overview of the OLAP Catalog...........ccccocouviiiiiiniiiniiiiiiiins s 5-2
Tools for Creating OLAP Metadatacocovuvviimiiiiiininiiiiiccne 5-2
OLAP Catalog COMPONENLS........coocuimimiiiiiiiiiiiiiiiiiciiiiie s 5-2
Logical Steps for Creating OLAP Metadata..........ccooeueiiinioiiiciicccc, 5-3

Accessing the OLAP Catalogcccooiiiiiiiiiiiiii s 5-3

Data Warehouse Requirements..............cccooviviiiiiniiiiiiniin s 5-4
Basic Star or Snowflake SChemaoccciiiiiiiiiiiciccc e 5-4
Dimension Tables with Complex Hierarchies..........c.cccoieiiiiiininiiiiiiicccen 5-4
Solved and Unsolved Fact Data...........ccccccociiiiiiiiiiiiiccccees 5-4
Multidimensional Datac.ociuioiiriiiiiiiiicice et 5-5
Parent-Child DimenSIioNscccceeuiuiuiieiiiiiciiiiieeee s 5-5

Creating Metadata Using Oracle Enterprise Manager.............c.cccoovvininiinininnininnnnnnncnes 5-6
Procedure: Accessing OLAP Managementccccoueeeurueiiicicieinincieieeccce e 5-6
Defining Metadata for Dimension Tables...........ccccoovviiiiiiiiiiiiii, 5-7
Defining Metadata for Fact Tablesccccccociiiiiiiiiicce 5-8
Viewing a Cube’s Data.........cccoviiiiiiiiiiiiiiiiicc s 5-9
Procedure: Viewing a Cube’s Data ..o 5-9

Creating Metadata Using PL/SQLccccoooiiiiiiii e 5-9
Views of OLAP Catalog Metadata ..o, 5-10
CWM2 Packages for Creating OLAP Dimensions. ..o, 5-10
CWM2 Packages for Creating Cubes..........ccccocuviviviviiiiininiiiiiiniinicccn 5-10
CWM2 Package for Mapping Metadataccoeuiiviimiiiiiiinicccce e, 5-11
CWM2 Package for Creating Analytic Workspacesccccovvvviviininiiniiniiniin, 5-11
CWM2 Package for Creating Level-Based Dimension Tablesccccccooiiiiiiiiinnnnns 5-11
CWM2 Packages for Classification and Validation ... 5-11

Part Il Oracle OLAP Administration

6

Administering Oracle OLAP

Administration OVEIVIEWcccccciiiiiiiiiiiiiiiiee ettt 6-2
Initialization Parameters for Oracle OLAP ..o, 6-3
OLAP_PAGE_POQOL_SIZEcceiviitiiiiiiniiiiieiiiiisieiictss s 6-4
Initialization Parameters for the OLAP APL..........coooiiiiiiiiccee e 6-4
Creating Tablespaces for Analytic Workspacescccoeiiiiiiiinniniinicce 6-5
Creating a Tablespace for ROIIDACKSc.ccciiiiiiieieiicece e 6-7
Creating a Temporary TableSpacecccccvvviiiiiiniiiiiniiiiicc e 6-8
Creating Tablespaces for Analytic WOrkspaces..........ccocoovuvimiiviiniinniniiniccnn, 6-8
Querying the Size of an Analytic Workspace..........cccccovvvviiiiiiniiiiniinnccne, 6-9
Setting Up User Names...........ccooiiiiiiiiiiiiicc s 6-9
Controlling Access to External Files ... 6-10
Creating a Directory ALas.........ccccociiiiiiiiiiiiiiiiicc s 6-10
Granting Access Rights to a Directory Aliascccoeoieeiiniienicccc e 6-10
Example: Creating and Using a Directory Alias.........cccoeeeiniiiiiiiiniciii, 6-11
Understanding Data StOrageccccooviiiiiiiiiiiii s 6-11
USer-OWned Tables ...ttt 6-12
SYStEM TaDLEScoeiviiiitcict e 6-12
Monitoring Performance ... 6-13

OLAP Dynamic Performance Views

System Tables Referenced by OLAP Performance VIewscccccovvniinniinnnninnnnnenn, 7-2
Summary of OLAP Performance VIEWScccccccoviviiiiiiiiiiniiiiincncsncesssees 7-2
VBAW_CALC ..o 7-3
VBAW_OLAP ...ttt 7-5
VBAW_SESSION_INFOc.ccoiiiiiiiiiiiiicitee ettt 7-6

OLAP_API_SESSION_INIT

OVEIVIBW ...eeieiieiieeiteette ettt ettt e teete e bt e et e e seeesbaasseaestesssaaasseesseeasseanssesssaessaaaseeenseesssesnseessanssaenseenn 8-2
Summary of OLAP_API_SESSION_INIT Subprograms............ccccccceviviiiinnniiiininnicnnnnn. 8-2
ADD_ALTER_SESSION PrOCEAULIC........c.eoeiieeiiieieeeeeee ettt s et e ene s 8-3

SYINEAX 1ottt 8-3

Vii

10

viii

PATAIMIETETS ..vvvvieee ettt e et e e e ettt eeeeetabaaeeesensasseeeeenssseseeeaansreseseennnres 8-3

EXCEPHIONS ..ot 8-3
EXAMPLES ..ottt 8-3
DELETE_ALTER_SESSION ProCedure..........ccccovirieiieieiieiesiererieeieneeeseesseesesseessesseessesssessessnens 8-5
SYNEAX wiitt e 8-5
PaTAmEtersS ...coeueiiieeiieiteteet ettt st sttt s et e bt e st e e s be e baenat e e beestesaneesseenbaenn 8-5
EXCEPHIONS ...ttt 8-5
EXAQMIPLES ..ottt s 8-5
CLEAN_ALTER_SESSION PrOCEAULIE........cceeuveiieieiieiesiieeeseerereeteseeetesseessesseesesseessesssessessnens 8-6
SYINEAX 1ttt 8-6
EXAQMIPLES ..ottt 8-6
ALL_OLAP_ALTER_SESSION VIEWcocotiiiiiieiiriieieneenteseeeteseessesreessessessesssassasssessasssessesssenses 8-7

Creating an Analytic Work space From Re lational Tables

Choosing to Use an Analytic Workspace.............ccccooiiiniiiniiica 9-2
Relational and Multidimensional Data Modelsccccccoeiiiiiiiiiiiiiiiiinie 9-2
Advantages of OLAP ... s 9-2

Functional SUMMATY ... s 9-2

Procedure: Create the OLAP Catalog Metadata..............ccccooviniiinniinnice 9-3

Procedure: Create the Analytic Workspace Cube ..., 9-3

Procedure: Create SQL Access to the Analytic Workspace...........ccccoceiiniiinininiccnn, 9-4

Column Structure of Dimension VIEWScccooiiiiiiiiiiiiiiicceeennas 9-5
Sample DIMension VIEW ... s 9-6
Grouping ID COIUMIN ..o s 9-6

Column Structure of FAct VIEWScccoociiiiiiiiiiiicccceecet e 9-6

Creating Materialized Views for the OLAP API

Choosing a Summary Management Strategyccccoooiiiiiiiniiiiiccccens 10-2
Summary Management with Analytic Workspaces.............ccooeeeiiiiiiiiiiice, 10-2
Summary Management with Materialized VieWsccccoovnivniniinn 10-2
About MaterialiZzed VIEWS........ccciiiiiiiiiiiiiiecere ettt 10-2

Materialized View FOrmatsc.cccoiiiiiiiiiiiiiiiicicctee et 10-3
GIOUPING SOESovviviiiicicietece e 10-3
Concatenated ROIUPccccvviviiiiiiiiiiiiiii e 10-3

Materialized Views and OLAP Metadatacccccoooiiiiiiiiniiiiccccccca 10-4

Dimension MaterialiZed VICWSc..oooiiviiiieiiiiiie ettt s 10-4

Creating Dimension Materialized VIEWS..........ccccooviiiniiiiiiiiiiinccs 10-4
Number of Dimension Materialized VIEWS.......c.cccevviveierieieieieeceereeeere st aeeeeeeas 10-5
Fact MaterializZed VIEWSccieieiiiieeeiecteeteteete ettt et e et e s essesste s e e e e s aesaessesssassenneen 10-5
Number of Fact Materialized VIEWS.......ccicviiiuiiiiiieciiecieeeeeteeeete ettt et 10-6
Choosing the Right Format for Materialized Views............cccococoivniininnniiiiie, 10-6
QuUETY Performance ..o 10-7
BUILA TIINIES ...ttt ettt ettt ettt e e b e e e e beeaeesaeenaesbeessenseensesaeseeseesnenns 10-7
Partial MaterialiZatiOncceeverieierieeieie ettt sreeste e e e s seesaesseessesseensenseenes 10-7
IMIV SIZE .ottt ettt et e et e et e st e e stt e e aeesste et e asae e teeesbaenbeenbbeenae e seeanbeensaestaennaeante 10-7
Lineage (KEY) ..o 10-8

Part Ill SQL Access Reference

11 DBMS_AW

Summary of DBMS_AW Subprograms..............cccccccoviviiiiiiiiiininiiiniieceseeeeesenes 11-2
EXECUTE PIOCEAULEoocvieeieeiieiieieeeesteete ettt te et esteeseessessaessaessessesssessesssasssassessesssensennes 11-3
Guidelines for Using Quotation Marks in OLAP DML Commands.................... 11-3

Effect of the OUTFILE Commandcccocueevieiuieieeieiiereecieereeeee e evee e 11-4
EXAQMPLE ..ot 11-4
GETLOG FUNCHON ..c..tiictitcteeteeteteete ettt te e ste s te e e e aeesbeesase e seesaasssaasseassaeesssesssassseeans 11-5
INTERP_SILENT PIOCEAUTEoooiviiieeiiie ettt e et e et e s sveeesaaeessnanessnaeeeas 11-6
Guidelines for Using Quotation Marks in OLAP DML Commands.................... 11-6
EXAQMIPLE ..o s 11-6
INTERDP FUNCHON. ...cetiiiiecie ettt ettt e e taeete e tesveebeesaaesseessseesbaeesaessseesssesnseenseeans 11-8
Guidelines for Using Quotation Marks in OLAP DML Commands.................... 11-8

Effect of the OUTFILE Commandccccceevieiuieieeieieereeeieereeeee e evee e 11-9
EXAQMIPLE ..o 11-9
INTERPCLOB FUNCHONc.viitieiieieieieeieeeeesieete st sve st svesee e sse e e sssessesssessesseessesseessessens 11-10
Guidelines for Using Quotation Marks in OLAP DML Commands.................. 11-10

Effect of the OUTFILE Commandcccooueeveeiuieieiieieireeiereceeere e ene e v 11-11
EXAQMIPLE ..ot 11-11
OLAP_EXPRESSION FUNCHON.cttteieieieieieeteieie ettt ste ettt et ese e ssessesseseessesaenseneens 11-12
View Used in These EXamples ... 11-13

Time Series Function With a WHERE Clause..........cccccveevereeienieiiieeeeeeeeeenn 11-14

Numeric Calculation With an ORDER BY Clause......cccccoeevveevvieeeeeeeeeeeeeeeeenee 11-14
PRINTLOG PrOCEAUTE ...ttt ettt ettt ettt e st ee e e senaaessnaessnneesnnens 11-16

12 OLAP_TABLE

DeSCIIPHON ... 12-2
Preliminary SEePS........cccooiiiiiiiiiii e 12-2
IMLEASULTESeveevieeeieeieeeiteeteeeteettesteeteestbeesteasssassssassesssaeasseesssesssaassaesseeenseesssassssanssesseesssesssesnnsen 12-3
DHIMEINSIONS ...euviieieeiiecieete ettt ettt e et e et e st e e bt ebeeesbe e sbeassaensaessseenseesssesssaasaesnsaesssannssessan 12-3
5 TS Ve o =T TSR 12-3
Hierarchy DIMeNSIONScccceuviiiiiiiiiiiiiniiiiiii e 12-4
Hierarchy Relations..........ccccccoviiiiiiiiiiiniiiniiiiiiii e 12-4
LeVel DIMENSIONSvecvieeiieiieiiiieeieieeteseete et et et te et e eseesaessaesbesssessesssesesssensenssensennns 12-5
In-Hierarchy Variables..........cccocooiiiiiiiiiiiiiicccne 12-5
GroUupPING IDS ..ot 12-6
Parent Grouping IDSccocceiiiiiiiiiiiiiii e 12-7
Family Relations.........ccccciiiiiiiiiiiiiiiiiiiiiiiii e 12-7
ATITIDULES .ottt ettt ettt et e et e b e ebe e beebaesbeersesteesbenbeeaseereenneeaeenns 12-8
BaSic SEEPS ...cviiiviiiiieiiice ettt 12-9
Defining @ ROW.....c.coiiiiiiiiiiiiiiiiiin s 12-9
Creating @ Tablecccociiiiiiiiiiiiiiic s 12-10
Using OLAP_TABLE in a SELECT Statement...........ccccccvuiiiiiniiininiiiciiecens 12-10
OLAP_TABLE RELEICIICO ...ttt ettt e et et e e et e ssaa e e s naeesenaeessnneessnneeas 12-12
SYINEAX «iitt e 12-12
PaTamEters ...ooeueeeiieieeitee ettt ettt s st e s be st e et e et e e aee s beenaneenne 12-12
AW _ATTACH Parameter........uueiiiiieeieeeee et eeaee e e e eeaaee e e s seseeeesssssaaeeeessesaneeesssnnes 12-12
Table INAIME PaTameEter......coviiiieiieeeeeeeeeee ettt e e e e ate et e e e e e s aaeeseneeessnneesenneens 12-13
OLAP_COmMmMAaNd Parameteroouveeeueieeeiieeeeeeeeeeee ettt e eeteeseeiteeeeseeseeaeeeenseeessnseeseneessneens 12-13
Limit_Map Parametercccooiiiiiiiiiii 12-14
MEASURE column FROM {measure | AW_EXPR expression}..........cccccoccvvviereurnencnes 12-15
DIMENSION [column FROM] dimMeENSioN.......ccveveierieirienienieniesiesiesieeeseseeseesessessessesseseseas 12-16
WITHL.. oottt et ettt s b e e aa e st e eae e beereebeessesesaseaseensenseesean 12-16
HIERARCHY [column FROM] hierarchy_relation[(hierarchy_dimension 'hierarchy)].....

12-16
INHIERARCHY inhierarchy_variablecccccooiiiiinininiiiics 12-17
GID column FROM gid_variable...........ccccccoviiiniiniiininiiiiiccccccccnes 12-17

PARENTGID column FROM gid_variableccccoccovvinniininiiiiiiin, 12-17

FAMILYREL coll, col2, coln FROM {expressionl, expression2, expressionn |
family_relation USING level_dimension } [LABEL label_variable] 12-17

ATTRIBUTE column FROM attribute_variable.........cccoovuviviviiiceeeeceeeeeeeeeeeeeen 12-18
ROW2CELL COIUMIN ...ttt 12-18
LOOP sparse_dimenSion...........cccovuviviiiiiiininiiiiiiiiiiiiiisssiensesssessesssse e 12-18

PREDMLCMD olap_commandcccooiiiiniiiiiiiiiccccineissse s 12-18
POSTDMLCMD olap_commandcccovviiiiinininiiniiiinisesessssssessssssesesesas 12-18
EXQINPLES ... 12-19
Creating @ VIEW ..o 12-19
Creating Views of Embedded Total Dimensions...........ccooeueeiceiiiiccieeiiceecccenes 12-20
Creating Views of Embedded Total Measures.............cccoooeuieieieieccciniiicecce e 12-21
Creating Views in ROIIUP FOIM........cooiiiiiiiiiiiiciccc e 12-23

Part IV OLAP Catalog Me tadata API Reference

13 Using the OLAP Catalog Metadata APIs

OLAP Metadata ENtitiesccooooiiiiiiiiiiiiiienesce ettt ettt 13-2
Constructing a DImension ..o 13-2
Procedure: Construct an OLAP DIimension........ccoceeeeerierierienieieieseeeesiesie et eeens 13-3
Constructing a Cube...........cocooiiiiii s 13-3
Procedure: Construct an OLAP CUbDe........ccoiiiriiiiieeieeeeteeeeteteee e 13-3
Mapping OLAP Metadata............ccccooviiiiiiiiiiiniiiiii s 13-4
Mapping t0 COIUMINSc.oviviiiieiiiiiiceeee e 13-4
Joining Fact Tables with Dimension Tables............ccccccoviniiiiiniiiniiiiiiiicccccns 13-4
Validating OLAP Metadata.............cccccoiiiiiiiiiiiiiie e 13-5
Structural Validationc..coeieiiiieie ettt sttt 13-6
CUDIES .ttt ettt ettt ettt et e e n et e st e n bt e a et e be b e ste b et ententeneeneeneeseeneens 13-6
DHIMENSIONS ..ttt ettt ettt et b e et e s bt et e satebesbe e benbeeeesneens 13-6
Mapping Validation ... 13-6
CUDIES ottt ettt ettt ettt a et e st e n b e a et e be b et et e bent et eneene st eseeneens 13-6
DHMENSIONS ..ttt sttt ettt et a e et e sae et e s st e aesbeebenbeeeesaeens 13-7
Invoking the Procedures ... 13-7
Security Checks and Error Conditionscoeeuieriiniiicicieiecceecce s 13-7
Case Requirements for Parameters............ccccocviiiiiiniiiiiiiininiiiiccnccsns 138-7

Xi

14

15

Xii

Creating and Saving Metadataccocoeiiiiiiiiii 13-7

Viewing OLAP Catalog Metadatacccooeviiiiiiiiiiiiiiiccn 13-8
Example: Creating OLAP Metadata for a Dimension Table..............c.cccccoooiiiinninnnn, 13-8
Example: Creating OLAP Metadata for a Fact Table..............cccccooiiinii, 13-11
Viewing OLAP Catalog Metadata
Access t0 OLAP Catalog VIEWSccccccuiiiiiiiiiiiiiiiiiicc s 14-2
Views of the Dimensional Model............ccoccoiiiiiic s 14-3
Views of Mapping Informationccccocoeiiiiiiiic 14-4
ALL_OLAP2_CUBES.......ccooiiiiiiiiiiiiiiiit s 14-5
ALL_OLAP2_CUBE_MEASURESccccoiiiiiiiiiiiiiiiics e 14-5
ALL_OLAP2_CUBE_DIM_USES..........c.cccceviniiiiiiiiiiisss s 14-6
ALL_OLAP2_CUBE_MEAS_DIM_USES........cccccceoeiiiiiiiiiiiiiiiciisesssss s 14-6
ALL_OLAP2_DIMENSIONScocoiiiiiiiiiiiin s 14-7
ALL_OLAP2_DIM_HIERARCHIESccccecooviniiiiiiiiiiiscs s 14-8
ALL_OLAP2_DIM_LEVELSccoiiiiiiiiiiininiic s 14-8
ALL_OLAP2_DIM_ATTRIBUTEScccccoiiiiiiiiiiiiii e 14-9
ALL_OLAP2_DIM_LEVEL_ATTRIBUTES.............ccccceooviiiiiiiiicccnncsnns 14-9
ALL_OLAP2_DIM_ATTR_USES........cccceiiiiriiiiiniiinicic s 14-10
ALL_OLAP2_DIM_HIER_LEVEL_USES..........cccccceceiiiiiiiiiiiiinicieeesas 14-10
ALL_OLAP2_CATALOGS........cooioiiiitiiteceee s 14-11
ALL_OLAP2_CATALOG_ENTITY_USESccoviiiiiiiiiinincns s 14-11
ALL_OLAP2_ENTITY_DESC_USEScccccceiiiiiiiiiiiiiiininnnsnss s 14-11
ALL_OLAP2_CUBE_MEASURE_MAPS...........ccccoecoviiiiiiiiiiic s 14-12
ALL_OLAP2_DIM_LEVEL_ATTR_MAPSccccevviiiiiiininiiiiininci s 14-12
ALL_OLAP2_LEVEL_KEY_COLUMN_USEScccceiiiniiiiiniiiiss s 14-13
ALL_OLAP2_JOIN_KEY_COLUMNL_USES..........cccceooiiiiiiiiineeeee s 14-14
ALL_OLAP2_HIER_CUSTOM_SORTccccceuviriririiiiiiniiiiiiireisin s 14-14
ALL_OLAP2_FACT_TABLE_GIDcccccooiniiiiiiiiniiiiiicicse s 14-15
ALL_OLAP2_FACT_LEVEL_USESc.ccccconiiiiiiiiiic s 14-16
CWM2_OLAP_AW_ACCESS
When to Use the AW_ACCESS Package..........cccooiuiiiiiiiiiiniiiiiiicccces 15-2
PrereqUisites ... 15-2
Process OVEIVIEWccociiiiiiiiiiiiiciicce bbb s 15-2

Preparing the Analytic WOrkspace.cccccooiiiiiiiiiiiiiiic e 15-3

Specifying the Source and Target Objectsccccceuviviiiiiiiiniiiiiiiies 15-4
Defining Dimension VIEWS ..o 15-5
Defining FACt VIEWSc.cuiiiiiiiiiiiieeciccceee ettt 15-8

Example: Creating VIEWSccccocoiiiiiiiiiiiiiicc s 15-9
Example: Input Files for Mapping Variables to VIeWsccccovvvviiiiininiicne, 15-10

Geography Dimension Standard Hierarchy View ..o, 15-10
Product DIimension VIEWccciiiiiiiiiieeieceeieeeeet ettt ettt s v v b v enne e 15-11
Channel Dimension VIEWc.ccccecieieririienesieieeieieeeeseeee e sseesesaessesssessesssessesssessenns 15-11
Time Standard Hierarchy Input File ..o, 15-12
Sales and Costs FACE VIEWS ..c.oviiiiiieieieiieeeee ettt st 15-12
Example: Script for the Product VIEW ... 15-13
Example: Product VIEW ... 15-15

Summary of CWM2_OLAP_AW_ACCESS Subprograms..............ccccccceeirreemcceenrucrencnernnenes 15-16
Create AW AccessStructures_FR Procedureo.uvovuviieieieeiiieeee e 15-17
Create AW AccessStructures Procedureoo.eveierieieieieieieeeie ettt 15-18

16 CWM2_OLAP_AW_CREATE

Summary of CWM2_OLAP_AW_CREATE Subprograms............cccccceeevirvcinnrnccincreenenne. 16-2
AW_DIMENSION_CREATE Procedure.......ccooueiieiieiieieeieeceeeeete ettt veve e eveens 16-2
AW_DIM_DEFINE_LOAD ProCeAUTIe.......ccouvvieeeeiieeeieeeeeeee et 16-3
AW_DIM_FILTER_LOAD Procedureccuecueeieeiieiecrieeeeeeee ettt eveeve e eveereeesesveens 16-4
AW_DIMENSION_REFRESH Procedure.........c..cooeeuievieerieieeeeieeeeeieceeeee e ee e 16-5
AW_DIMENSION_CREATE_ACCESS Procedurec.ccooeuiveeueeeeeeeeeeeeeeeeeeeeeee e 16-6
AW _CUBE_CREATE PrOCEAULE ...ccovviiieeeeeeeieeeeeeeeeeeeee et e et eseveeesaaeessaasessnaeeean 16-8
AW_CUBE_DEFINE_LOAD Procedurec.ccoueoieieiiieieieceeereeeeeie et 16-9
AW_CUBE_FILTER_LOAD ProOCeAUTE.cccvvvieeeeiieeeeeeeeeee e e eeeeeeeaveseeave s 16-9
AW_CUBE_MEASURE_LOAD ProCedUTEcouverieeiieiiirieieereeeecteete et sveeaevees 16-10
AW_CHOOSE_LEVEL_TUPLES Procedurecceeevevuierieiieeeeceeereeeeeeeeeeeveesvesveessessnennens 16-11
AW_DEFINE_AGG_PLAN PIOCEAULEoeeeevvieeeeiieeeeee ettt eeveeseaeeeennns 16-11
AW_CUBE_REFRESH ProCeAUTIEccveiietieiiteetecieeteettete ettt ee e et eveeve e neeas 16-12
AW_CUBE_CREATE_ACCESS ProCedUre.......c..cooeeuiiiierieieeeeieereceeieeete e ee e 16-13

17 CWM2_OLAP_CUBE
Understanding Cubesc.ccooiiiiiiiiiiiiiiiii s 17-2

Xiii

Summary of CWM2_OLAP_CUBE Subprograms.............ccccoviiiiniiiiniicinccnnenes 17-2

ADD_DIMENSION_TO_CUBE ProcedULIEcceevviereeieeieieereeiteeeecieeeeeveeveeve e sae e 17-3
CREATE_CUBE PIOCEAULE ...t eeeee e etee e s e e eenaesesnaaesennaeeenns 17-4
DROP_CUBE PIOCEAULEccuvviieeeee ettt e st e e s eenaaeseaaessnnaeseennessenneeeas 17-5
LOCK _CUBE PLOCEAULEceeviiieeeie ettt ettt ettt es et e et eeaaesseaaeessnaeesenneeesneeens 17-6
REMOVE_DIMENSION_FROM_CUBE Procedureccccvevveririereererieecieneeeneeseeveseenees 17-6
SET _CUBE_NAME PIOCEAULE.oooveiieeeieeeee ettt ettt eae e et e et e et eesnaeesaaesssnaeeens 17-7
SET_DEFAULT_CUBE_DIM_CALC_HIER Procedure..........ccccooveveieeerecreeciecreeeeereere e 17-8
SET_DESCRIPTION PrOCEAULIEccuvveeeeeieeeeie et eeaaee e esnseeesanesennneeenns 17-9
SET_DISPLAY_NAME ProCeAUIEcceevietieiitiecteeteeieeteteeve ettt eaeeveesae e sresneveennens 17-10
SET MV_SUMMARY_CODE PrOCeAUIE.cooeuieiiiiieeeieeeeeeeeeeeeeeeeeeete e eevee e 17-11
SET_SHORT_DESCRIPTION ProCeAUTIEoooevviiieieeeeieeeeeeeeeeeeeeeeeee e 17-12
Example: Creating a Cube ... 17-13

18 CWM2_OLAP_DIMENSION

Understanding Dimensions.............ccccccociiiiiiiiiiiiiii s 18-2
Summary of CWM2_OLAP_DIMENSION Subprograms...............cccccevuvvnnnininnnnnnennnnn. 18-2
CREATE_DIMENSION PIOCEAULIE «...covvvieteeeeeeeeeeeeee et eaeeesaaesennaeeenns 18-3
DROP_DIMENSION PrOCEAUL......uveiieiieeeee ettt ettt ettt eeete e et e s eaeessnsaessaaeesenaeeeens 18-4
LOCK_DIMENSION PrOCEAUL.....ueeiieeieeeeee ettt ettt ettt et e seaaeeseteessnseessanessenaeesans 18-5
SET_DEFAULT_DISPLAY_HIERARCHY Procedure..........cccceceevererveneneneneneneneeneenenne 18-6
SET _DESCRIPTION PrOCEAUIEcooueeiieeieeeeeee ettt ettt eiee et e et e et eesaaeesaaessenaeeens 18-7
SET_DIMENSION_NAME ProcedUurecccoceeirirerierieieieiesteteeettee e ete e st seeseeseseeneeseenes 18-7
SET _DISPLAY_NAME PIrOCEAULEeooieeieeeeieeeee et ee e 18-8
SET PLURAL_NAME PIrOCEAUTIEcoooveiieee ettt ettt s et esaaeeseaaessenaeeens 18-9
SET_SHORT_DESCRIPTION ProCedurecccceruereeieieieeniieiesieeeesiesiesieeeeeseeseesessessesseneas 18-10
Example: Creating a CWM2 Dimension............cccccocoiviiiiiiniiiiiiiiiicccceens 18-11

19 CWM2_OLAP_DIMENSION_ATTRIBUTE

Xiv

Understanding Dimension Attributes..............ccccocoooiiiii 19-2
Summary of CWM2_OLAP_DIMENSION_ATTRIBUTE Subprogramsccccccceuuuene. 19-3
CREATE_DIMENSION_ATTRIBUTE Procedure..........c.cccoouviiiiniiiniiniiiiiiicccccennns 19-3
DROP_DIMENSION_ATTRIBUTE Procedurecccoovvivivnininiiiiicicciccencncennes 19-5
LOCK_DIMENSION_ATTRIBUTE Procedureccccovivinininininiiiiiiiiicccccennas 19-6
SET _DESCRIPTION PrOCEAULIEcooueeieeeie ettt eaee et e et e et eesaaeesanessenaeeens 19-7

SET_DIMENSION_ATTRIBUTE_NAME Procedure.........ccccceveereeneceninneneneneenenenene 19-8

SET_DISPLAY_NAME Procedure............cccocovviiinininiiniiiiiiiicinncsssssscssns 19-9
SET_SHORT_DESCRIPTION ProCeAUTIE........oeoeevieeeeeeeeeeeeeee e eeeeee et eavee s ennees 19-10
Example: Creating a Dimension Attributeccccocoiiiii 19-10

20 CWM2_OLAP_HIERARCHY

Understanding Hierarchies...............ccocooiiiiiiies 20-2
Summary of CWM2_OLAP_HIERARCHY Subprograms............cccccceceuruiiniiniinnnniinnnnn, 20-2
CREATE_HIERARCHY PrOCEAUTIEcoovveeeeeeieieeeeeeeeeeeeeeeee e enves e eaavesennee e 20-2
DROP_HIERARCHY PIrOCEAUTIE ...coovviiieeeeeeeeeeeeeeeeeetee ettt e et e s seaeessaaesseanessnaneeas 20-4
LOCK_HIERARCHY PIrOCEAUTIE ...coovvieieeeieeeeeeeeeeeeeeee ettt e et e et eseeveeesavaessaanessnaeens 20-5
SET_DESCRIPTION PrOCEAULE.coovviieeeeeeteeeeeeeeeeeeeeeeee e e eerve e eveeeenvessennnesenneeeas 20-6
SET _DISPLAY _NAME PrOCEAUICooioeeieiieeieeeeeeeeeeeeeee ettt ettt e st e e eaaessanessaaeeas 20-7
SET_HIERARCHY_NAME ProCedure........cccoeeieieieieieieieeettee sttt sttt esneeeens 20-8
SET_SHORT_DESCRIPTION Proce@duUre........ccoouviieeeieeieeeeeeeeeeeeeeee e eeeeeeeveeeeeveeenaeeea 20-9
SET_SOLVED_CODE ProCedUrecccccveieieieiriieiieieettiesiesie ettt se st s ssesee e seeeeneens 20-10
Example: Creating a Hierarchy.............ccooiiiiiiiicces 20-11

21 CWMZ2_OLAP_LEVEL

Understanding Levels ..o 21-2
Summary of CWM2_OLAP_LEVEL Subprograms.............ccccccevivniiiininncinniiicinnceeenns 21-2
ADD_LEVEL_TO_HIERARCHY Procedure........ccccvevieerieiieeeieeeeceeeteeeecveeeee e 21-3
CREATE_LEVEL PIrOCEAULIE «..cco ittt et e et e s veeesaaeessnaaessnaneens 21-4
DROP_LEVEL PIOCEAUIEceveieieeieeeeee et eeeeeeee e e s e e s enae e s eaeesenaeessnnnesenneeean 21-5
LOCK _LEVEL PIOCEAULEeeiiiieieeeeeee ettt et s et ete e e sae e s seaeessnvaessanessnaeens 21-6
REMOVE_LEVEL_FROM_HIERARCHY Procedure.......c.cccoeevieeeveneenieceeieeeeieereeereeveenns 21-7
SET_DESCRIPTION PrOCEAULE.coovviieeeeeetieieeteeeeeeeeeee e e e eerveeseveeeenvesssnnnesennneean 21-8
SET_DISPLAY_NAME ProCeAUIE.......ccuecuviiieieieetieieeeeteeieee ettt eeae e eveesae e 21-9
SET _LEVEL_NAME PrOCEAUTIE.....cooouiiiieeieieeieeeeeteeeeeeee ettt s et e s eateeseeeeesaaeessnseessnneeens 21-9
SET _PLURAL_NAME PrOCEAULEc.uvviieeeieeeeeeee et eaveseenvesesnaeesenes 21-10
SET_SHORT_DESCRIPTION Procedure..........cccccieeueeieerierieirieieneeeeeeeeeesreeveesvesvaessessnennens 21-11
Example: Creating a Level............cocoooiiiiiiic s 21-12

XV

22

23

24

25

XVi

CWM2_OLAP_LEVEL_ATTRIBUTE

Understanding Level Attributes ..o 22-2

Summary of CWM2_OLAP_LEVEL_ATTRIBUTE Subprograms...............cccccvuviiuiinninnnnnn. 22-3
CREATE_LEVEL_ATTRIBUTEcooi ottt sttt se ettt se s e seeennas 22-3
DROP_LEVEL_ATTRIBUTE ProCedUre......ccvcovietieiieieeieeieetecteeeieeee et v v 22-5
LOCK_LEVEL_ATTRIBUTE ProceduUre........ccooviieeeeiieeieeieeeeeeeeeeeeee e 22-6
SET_DESCRIPTION PIrOCEAUIE......ccuveiieeetiereetieteeeteete ettt eteesveeaesreeevesveesvesseensesseennesaeennas 22-8
SET_DISPLAY_NAME ProOCEAUIEc.eoovieeiietieeiiieeeectectieeee ettt s se s sae e e v eanas 22-9
SET_LEVEL_ATTRIBUTE_INAME Procedurec.cceoveeirienieiieesieseeiesieveeeeveseeneens 22-10
SET_SHORT_DESCRIPTION Procedurecccueeueeuiiriecieereeieereeeeeeeeeereesveseeseesssenesneens 22-12

Example: Creating a Level Attribute.............c.ccocoooiiiiiiiics 22-13

CWM2_OLAP_MEASURE

Understanding MeEaSUTEScccoviviiiiiiiiiiiiiiiiii e 23-2

Summary of CWM2_OLAP_MEASURE Subprograms...............ccccoceuruiiinnininiiniiininnn. 23-2
CREATE_MEASURE PIOCEAULE ...eveeieeieeee ettt ettt ettt s et ee v s sanessnae e 23-3
DROP_MEASURE PIOCEAULEoeieeeeiieeeie ettt ettt ete e et e st esenae s snsaessaaessenaeeeans 23-4
LOCK_MEASURE PIOCEAULEoeeeeeviieteie ettt etee e e e e eenneeesaaesenaeeenns 23-4
SET _DESCRIPTION PrOCEAUIEcoiueeiieeieeeeeee ettt ettt ettt eeeae et e et eesnaeesaaeesenaeeens 23-5
SET_DISPLAY_NAME ProOCEAUIEc.coovieviietietiieeiectectieetete ettt se e esve e eanas 23-6
SET _MEASURE_NAME PrOCEAUIE.......ooooeeiiieeeeeee et eeeee e eeeeeeave e esaaesenaaeeenns 23-7
SET_SHORT_DESCRIPTION Procedurec.ocovevuiiueevieeieieereeieereeetesreeeeseese e essesseessensens 23-8

Example: Creating a MEASUTIEcccooiiiiiiiiiiiic s 23-9

CWM2_OLAP_METADATA_REFRESH

The OLAP API Metadata Reader VIEWS.............ccooouieiiiiieiiiniicicceecee ettt eve s 24-2

Summary of CWM2_OLAP_METADATA_REFRESH Subprograms.............ccccceevrnnnnnnne. 24-3
MR_REFRESH PrOCEAULE.ccoieiiiieeiieeeee ettt ettt st e et e e eeaae e seaaeeesnteessasaeesasesssnaeesns 24-3

CWM2_OLAP_PC_TRANSFORM

PrereqUisites ... 25-2
Parent-Child Dimensions...........ccccooiiiiiiiiiiiii e 25-2
Solved, Level-Based DImMeENSIONSoooouviiiiviiiiiieieeieeeeeeeeeeeeeeee et eesaveseeaaeeesaeeseneeeenns 25-3
Example: Creating a Solved, Level-Based Dimension Table..................c.ccoooooiiii, 25-4

26

27

28

Grouping ID COIUMIN.......ciiiiieiieiceeee e 25-5

Embedded Total Key COIUMIcoiuiiimiiiiiiiiiiiiicce e 25-5
Summary of CWM2_OLAP_PC_TRANSFORM Subprograms............ccccccevuvrivnininricnnnnnen. 25-5
CREATE_SCRIPT PrOCEAUTEceveeeeeeeeeeeeeee e eeae e e e sereeeeeneessenneesnnneeens 25-5
CWM2_OLAP_TABLE_MAP
Understanding OLAP Metadata Mapping ... 26-2
Summary of CWM2_OLAP_TABLE_MAP Subprogramsc.ccccceeevirvucinnreccenencenenne 26-2
MAP_DIMTBL_HIERLEVELATTR Procedure........cccccoeceeievieeieiieeeieeeeeeee e eee e 26-3
MAP_DIMTBL_HIERLEVEL Procedure..........cccoeeiriririirieiirieieseeeeteeeee et 26-5
MAP_DIMTBL_HIERSORTKEY Procedure........ccoccieerierieniinieienieieietereeeete e 26-6
MAP_DIMTBL_LEVELATTR ProCedure..........ccoecueriieeieriirieneeieseesieseeseeseeveseesesseessesseenns 26-7
MAP_DIMTBL_LEVEL PrOCEAUTIEccueoviieieieieieieieieeet ettt sttt eseesesseeeens 26-9
MAP_FACTTBL_LEVELKEY Procedure.........cocoeotriririerieieieieieeeeeiteeeiese e seeie e 26-10
MAP_FACTTBL_MEASURE PrOCEAUIEc.evvieeeieieceee ettt eenee 26-12
REMOVEMAP_DIMTBL_HIERLEVELATTR Procedureccccceeeeieveeeevenenesieseeeneenes 26-13
REMOVEMAP_DIMTBL_HIERLEVEL Procedurecccoeerievieienieieeeieese e 26-15
REMOVEMAP_DIMTBL_HIERSORTKEY Procedureccccoeveeeeviieceenieeeeresieseeenennens 26-16
REMOVEMAP_DIMTBL_LEVELATTR Procedureccccooeeuerieienieieeeiieese e 26-17
REMOVEMAP_DIMTBL_LEVEL Procedure..........cccceerenierieieieieeeeee et 26-18
REMOVEMAP_FACTTBL_LEVELKEY Procedure.........ccccoveevenieienieeieneeeieseere e 26-19
REMOVEMAP_FACTTBL_MEASURE Procedure..........cccceeeririnierieniinieieneeieeeeeeee e 26-20
Example: Mapping a Dimension ... 26-21
Example: Mapping a Cube.........cccocooiiiiiiiiiiiic s 26-22
CWM2_OLAP_VALIDATE
Summary of CWM2_OLAP_VALIDATE Subprograms............ccccceevininiinnnniinniccnnn 27-2
VALIDATE_DIMENSION ProcedUrec.coeeerierieierieieieteeeetee st eeesie e seestesseeeseneeseeneenens 27-2
VALIDATE_CUBE PIOCEAUI ... vveeieeieeeeeeeeeeee ettt ettt eaae e et saaeesaseessnaeesenneas 27-2
CWM_CLASSIFY
Understanding the OLAP Classification Systemcccccovviniininnninn, 28-2
Summary of CWM_CLASSIFY Subprograms ... 28-3
ADD_CATALOG_ENTITY ProCedUTIE.....cceoieueieieieieieteteeettee sttt see st teseeneeseeeeseseens 28-4

Xvii

ADD_DESCRIPTOR_ENTITY_TYPE Procedure........cccoccveireirenineeenieneneeeneeneeneeneneen 28-5

ADD_ENTITY_DESCRIPTOR_USE Procedurecccccooiiiininiiniiiiiiiiiccccicennns 28-6
CREATE_CATALOG FUNCHON «..eooevviieieie et eeave e esnaaesenaeeenns 28-7
CREATE_DESCRIPTOR FUNCHON ..ottt 28-8
CREATE_DESCRIPTOR_TYPE Procedure...........cccouviiiniiiiiiiiiiiiccciccecccisinennns 28-9
DROP_CATALOG PrOCEAULE......oeoeeeeeeieeeeeeeeee ettt ee e eeaaaesenaaeseanesennees 28-10
DROP_DESCRIPTOR Procedure..........ccccvuviriiiiiiiiiiininiiiiiiiiiciiciiseesssssssssssssessees 28-10
DROP_DESCRIPTOR_TYPE Procedure..........cccccoeviviiiiiiniiiiniiiiniiinininincsnscees 28-11
LOCK_CATALOG PrOCEAULE.oooeueeeeeteeeeeeee et eee e s e enveesenneesennee s 28-12
REMOVE_CATALOG_ENTITY Procedure..........ccccceeuvivivinininiieniniiiiieinininisnssnsesesees 28-12
REMOVE_DESCRIPTOR_ENTITY_TYPE Procedure...........ccccocovivivinnnnnnninnininne 28-13
REMOVE_ENTITY_DESCRIPTOR_USE Procedure............cccccovvvivininininniniininicicnn 28-14
SET_CATALOG_DESCRIPTION Procedure..........ccccccoeeueuiiiiiiiininiiiniiiiiiiiinniencsenes 28-16
SET_CATALOG_PARENT Procedureccccccovviniininiiiiniiiniiiniininssssscces 28-16
Example: Creating a Measure Folder ... 28-18

PartV OLAP API Materialized View Reference

29 Creating Di mension Materialized Views

Creating Materialized Views for Dimensionscccccoeiiiiiiiniiiccnes 29-2
Statistics and Bitmap Indexes.............ccccccooiiiiiiiiiiiiiii 29-2
1o 1 7= 8 1 Lar= F U U USROS PR 29-2
Bitmap INA@XES.....c.cuiiiiiiieieiiiiiciccc e 29-3
The CREATE Statement for a Dimension Materialized View..........ccccooevviieeciineciecreenenne. 29-3
Sample Script for the TIMES_DIM Dimensionccccocevininininininnnn, 29-4
Table Structure of Sample TIMES_DIM Dimension Materialized View...............c......... 29-10

30 Creating Fact Materialized Views With DBMS_ODM

Using the DBMS_ODM Package.............ccoviuiiiiiiiiiiiiic s 30-2
Procedure: Create and Run Scripts to Generate Grouping Set Materialized Views......... 30-2
Partitioning, Statistics, and Indexes............ccccociiiiiiiiiiiiiiiccc e 30-3
PartitioNiNgc.oveveviieiieetee e 30-3
StAISEICS 1. 30-3
Bitmap INAEXES.....c.cuiviiiiiiiiiiiiciiic 30-4

xviii

Sample Script for the COST CUubecccooeiriiiiriiiniceeeeeeeeeeee st 30-4

Summary of DBMS_ODM SubpPrograms.............ccccccvurivininiinininininnininnnnssesssssssss 30-11
CREATEDIMLEVTUPLE ProCedUre.......c.ccceeuiiiererierieeieieeeesiesteeieseeesseseeessesssesessesssessens 30-11
CREATECUBELEVELTUPLE Procedure.........c.ccecveririenenieieieineeeeieseseesieie et 30-12
CREATEFACTMV_GS PTOCEAUTIEcveuieieieieiieieie ettt ettt ettt st enes 30-13
CREATEDIMMYV _GS PrOCEAUTICcccuvviiieeeeeeeeeeeeeeeeeee et sevee s eearesenvesssvesennens 30-14

31 Creating Fact Materialized Views With OLAP Summary Advisor

Using the OLAP Summary Advisor Wizard.............cccoviiiiiiiiniic 31-2
Procedure: Run the OLAP Summary AdViSOTccceeiviemeieiniicieiecce s 31-2
Partitioning, Statistics, and Indexes.............ccocccciviiiiiiiniiiiiieee e 31-3
Partitioningccoeiiiiiiiiiiiic s 31-3
StATISEICS .. s 31-3
Bitmap INAEXES......c.ciuiiiiiiiiiiiiiii s 31-4
The MV CREATE Statement With Concatenated Rollupc.ccoceevvieieinnincineinccnccnnnes 31-4
Sample Script for the COST Cubeccccccoiiiiiiiiiiiiiiiiii s 31-6

A Upgrading From Express Server

AdMINISTIATION ..ottt ettt et e et e s beeba e baessesaeeabesbeensesseeseeernenes A-2
AUthentication Of USETISccvciiiuieiiiieiecieeeeeteeee ettt et ettt te e sae s esse e e eseeraebessaereas A-2
Management TOOLScccciviiiiiiiiiii s A-2

Data TEANSLETccueiiiieiiieeieteceecteee ettt ettt ettt et e e e et e ebe e besbe e b e baesbesseeaseese e seeseasesssensesrsenseeseas A-3

LOCALIZAIONc.eoeiiiiiciiieeecece ettt ettt et et et e ba et e e sa et e eae e beeseeebeeseesbeensenseenseensenns A-3

APPLICAtIONS SUPPOLL....c.oomiiiiiiiiieiiieiece ettt ettt A-4
Programming ENvironment ..o A-4
COMMUNICATIONS . .ttitveeiieeteeieeiteeteesteeeteesttesteeesbeeeee e seesseessaeeseasssaesseesssessseesseesssessseeseeensessseenn A-5
1Y 15 =T - - RSP P A-5

Programming Language Changes...............cccoviiiiiiiiiiiicccccces A-5
INEW COMIMANASeviiiiiiieie ettt ettt ettt e e ettt e teeteesteeateseesesbeesaesseesseeseessaseesesssenseeasenseeseas A-5
ODbs0lete COMMEANGScvieieiieiierieeieie ettt ettt e steste e estesseesaesseessesseessasseessesssessesseensessees A-6
UPDATE and COMMIToooiiiieiectiecteeteeteeteete ettt et ae et eveera e e e sseereesbasseesesseessesasenseerean A-6

How to Upgrade an Express Database.............cccccccoooiiiiiiiiiiiiiicccs A-6

Index

Xix

XX

Send Us Your Comments

Oracle9i OLAP User’s Guide, Release 2 (9.2.0.2)
Part No. A95295-02

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
document. Your input is an important part of the information used for revision.

Did you find any errors?

Is the information clearly presented?

Do you need more information? If so, where?

Are the examples correct? Do you need more examples?
What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document
title and part number, and the chapter, section, and page number (if available). You can send com-
ments to us in the following ways:

Electronic mail: i nf odev_us@r acl e. com
FAX: 781-238-9850 Attn: Oracle OLAP
Postal service:

Oracle Corporation

Oracle OLAP Documentation

10 Van de Graaff Drive

Burlington, MA 01803

US.A.

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-
tronic mail address.

If you have problems with the software, please contact your local Oracle Support Services.

XXi

XXii

Preface

The Oracle9i OLAP User’s Guide describes how to use Oracle OLAP for business
analysis. It introduces the concepts underlying analytical applications and
multidimensional querying, and the tools used for application development and
system administration.

This preface contains these topics:

Audience

Organization

Related Documentation
Conventions

Documentation Accessibility

xXiii

Audience

This guide is intended for application developers and database administrators who
perform the following tasks:

» Administer a database

» Build and maintain data warehouses or data marts
« Define metadata

= Develop analytical applications

To use this document, you need no prior knowledge of Oracle OLAP.

Organization

XXiv

This document is organized in five parts.

Part 1: The Basics

Provides conceptual information of general interest to anyone planning to use
Oracle OLAP.

Chapter 1, "Overview"

Explains the basics of using Oracle OLAP and related client software for analytical
applications.

Chapter 2, "Manipulating Multidimensional Data"
Provides an overview of data manipulation using the OLAP DML.

Chapter 3, "Developing OLAP Applications”

Presents the rich development environment and the powerful tools that you can use
to create OLAP applications.

Chapter 4, "Designing Your Database for OLAP"

Highlights some of the most important data warehousing concepts, and provides
additional information that is specific to Oracle OLAP.

Chapter 5, "Creating OLAP Catalog Metadata"
Provides an overview of OLAP Catalog metadata and the APIs for working with it.

Part Il: "Oracle OLAP Administration"

Provides information for database administrators on administrative tasks associated
with Oracle OLAP.

Chapter 6, "Administering Oracle OLAP"
Describes the various administrative tasks that are associated with Oracle OLAP.

Chapter 7, "OLAP Dynamic Performance Views"
Describes the relational views that contain performance data on Oracle OLAP.

Chapter 8, "OLAP_API|_SESSION_INIT"

Describes the OLAP_API _SESSI ON_I NI T package, which contains procedures for
maintaining a configuration table of initialization parameters.

Chapter 9, "Creating an Analytic Workspace From Relational Tables"

Describes how to create an analytic workspace from a star schema and OLAP
Catalog metadata. Describes how to generate relational views of the workspace
data.

Chapter 10, "Creating Materialized Views for the OLAP API"

Describes how to create materialized views for star schemas that will be used by the
OLAP APL

Part lll: "SQL Access Reference”

Provides information about SQL packages and procedures that either create
relational views of multidimensional data or embed OLAP DML commands in their
syntax.

Chapter 11, "DBMS_AW"

Contains reference information for the DBM5_AWpackage, which enables SQL
programmers to issue OLAP DML statements against analytic workspace data.

Chapter 12, "OLAP_TABLE"

Describes how SQL programmers can use the OLAP_TABLE function in a SQL
SEL ECT statement to query multidimensional data in an analytic workspace

XXV

XXVi

Part IV: "OLAP Catalog Metadata APl Reference"

Describes the OLAP Catalog views and the PL/SQL packages for creating OLAP
Catalog metadata.

Chapter 13, "Using the OLAP Catalog Metadata APIs"
Describes how to use the CWW2 PL/SQL packages.

Chapter 14, "Viewing OLAP Catalog Metadata”
Describes the views of OLAP Catalog metadata.

Chapter 15, "CWM2_OLAP_AW_ACCESS"

Describes procedures for creating generic views of data stored in analytic
workspaces.

Chapter 16, "CWM2_OLAP_AW_CREATE"

Describes procedures for creating an analytic workspace from relational tables and
generating views of the resulting data in the analytic workspace.

Chapter 17, "CWM2_OLAP_CUBE"

Describes procedures for creating, dropping, and locking cubes, for adding
dimensions to cubes, and for setting general properties of cubes.

Chapter 18, "CWM2_OLAP_DIMENSION"

Describes procedures for creating, dropping, and locking dimensions, and for
setting general dimension properties.

Chapter 19, "CWM2_OLAP_DIMENSION_ATTRIBUTE"

Describes procedures for creating, dropping, and locking dimension attributes, and
for setting general properties of dimension attributes.

Chapter 20, "CWM2_OLAP_HIERARCHY"

Describes procedures for creating, dropping, and locking hierarchies, and for setting
general hierarchy properties.

Chapter 21, "CWM2_OLAP_LEVEL"

Describes procedures for creating, dropping, and locking levels, for adding levels to
hierarchies, and for setting the general properties of levels.

Chapter 22, "CWM2_OLAP_LEVEL_ATTRIBUTE"

Describes a procedure for creating level attributes, associating them with dimension
attributes, and for dropping, locking, and setting the general properties of level
attributes.

Chapter 23, "CWM2_OLAP_MEASURE"

Describes procedures for creating, dropping, and locking measures, and for setting
general properties of measures.

Chapter 24, "CWM2_OLAP_METADATA_REFRESH"
Describes the procedure for refreshing metadata tables for the OLAP APL

Chapter 25, "CWM2_OLAP_PC_TRANSFORM"

Describes the procedure for converting a parent-child dimension table to an
embedded-total dimension table.

Chapter 26, "CWM2_OLAP_TABLE_MAP"

Describes procedures for mapping OLAP metadata entities to columns in your data
warehouse tables or views.

Chapter 27, "CWM2_OLAP_VALIDATE"
Describes procedures for validating OLAP metadata.

Chapter 28, "CWM_CLASSIFY"

Describes procedures for creating measure folders and populating them with
measures.

Part V: "OLAP API Materialized View Reference"

Explains how to create materialized views for queries for aggregate data from the
OLAP APL

Chapter 29, "Creating Dimension Materialized Views"
Explains how to create materialized views for dimensions.

Chapter 30, "Creating Fact Materialized Views With DBMS_ODM"

Explains how to use the DBMS_ODMpackage to create fact table materialized views
in grouping set form.

XXVii

Chapter 31, "Creating Fact Materialized Views With OLAP Summary Advisor"

Explains how to use OLAP Summary Advisor to create fact table materialized
views in concatenated rollup form.

Appendix A, "Upgrading From Express Server"

Provides upgrading instructions and identifies some of the major differences
between Oracle Express Server 6.3 and Oracle9i OLAP.

Related Documentation

XXViii

For more information, see these Oracle resources:

= Oracle9i OLAP Developer’s Guide to the OLAP API
« Oracle9i OLAP API Javadoc

= Oracle9i OLAP Developer’s Guide to the OLAP DML
« Oracle9i OLAP DML Reference help

Many books in the documentation set use the sample schemas of the seed database,
which is installed by default when you install Oracle. Refer to Oracle9i Sample
Schemas for information on how these schemas were created and how you can use
them yourself.

In North America, printed documentation is available for sale in the Oracle Store at
http://oracl estore.oracle.conl

Customers in Europe, the Middle East, and Africa (EMEA) can purchase
documentation from

htt p: // waw. or acl ebookshop. conl

Other customers can contact their Oracle representative to purchase printed
documentation.

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register
online before using OTN; registration is free and can be done at

http://otn.oracle.con adni n/ account/ menber shi p. ht m

If you already have a username and password for OTN, then you can go directly to
the documentation section of the OTN Web site at

http://otn.oracle.conf docs/index. ht m

To access the database documentation search engine directly, please visit

http://tahiti.oracle.com

Conventions

This section describes the conventions used in the text and code examples of this

documentation set. It describes:
« Conventions in Text

= Conventions in Code Examples

Conventions in Text

We use various conventions in text to help you more quickly identify special terms.
The following table describes those conventions and provides examples of their use.

Convention Meaning

Example

Bold Bold typeface indicates terms that are
defined in the text or terms that appear in
a glossary, or both.

Italics Italic typeface indicates book titles or
emphasis.

UPPERCASE Uppercase monospace typeface indicates

nonospace elements supplied by the system. Such

(fixed-width) elementsinclude parameters, privileges,

f ont datatypes, RMAN keywords, SQL

keywords, SQL*Plus or utility commands,
packages and methods, as well as
system-supplied column names, database
objects and structures, usernames, and
roles.

When you specify this clause, you create an
index-organized table.

Oracle9i Database Concepts

Ensure that the recovery catalog and target
database do not reside on the same disk.

You can specify this clause only for a NUMBER
column.

You can back up the database by using the
BACKUP command.

Query the TABLE_NAME column in the USER _
TABLES data dictionary view.

Use the DBMS_STATS.GENERATE_STATS
procedure.

XXiX

Convention Meaning Example
| ower case Lowercase monospace typeface indicates Enter sql pl us to open SQL*Plus.
nonospace executables, filenames, directory names, . i 1 .
(fixed-width) andsample user-supplied elements. Such The password is specified in the or apwd file.
f ont elements include computer and database Back up the datafiles and control files in the

names, net service names, and connect / di sk1/ or acl e/ dbs directory.

identifiers, as well as user-supplied The depar t ment _i d, depar t ment _nare,

database objects and structures, column dl . i dcol i th

names, packages and classes, usernames and| ocat | oh_I d columns are in the

4 . 4 hr . depart ment s table.
and roles, program units, and parameter
values. Set the QUERY_REVRI TE_ENABLED
. initialization parameter to t r ue.

Note: Some programmatic elements use a

mixture of UPPERCASE and lowercase. ~ Connect as 0€ user.

Enter these elements as shown. The JRepUti | class implements these

methods.
| ower case Lowercase italic monospace font You can specify the par al | el _cl ause.
Irr};)ﬁlolscace represents placeholders or variables. Run Uol d_r el ease. SO where ol d_
nospace r el ease refers to the release you installed

(fixed-w dth) . di
f ont prior to upgrading.

Conventions in Code Examples

Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line

statements. They are displayed in a monospace (fixed-width) font and separated

from normal text as shown in this example:

SELECT usernane FROM dba_users WHERE username = 'M GRATE' ;

The following table describes typographic conventions used in code examples and

provides examples of their use.
Convention Meaning Example

[l

Brackets enclose one or more optional
items. Do not enter the brackets.

Braces enclose two or more items, one of

{}

which is required. Do not enter the braces.

| A vertical bar represents a choice of two

or more options within brackets or braces.

Enter one of the options. Do not enter the
vertical bar.

XXX

DECI MAL (digits [, precision])

{ENABLE | DI SABLE}
{ ENABLE | DI SABLE}
[COWPRESS | NOCOVPRESS]

Convention Meaning Example

Horizontal ellipsis points indicate either:

« That we have omitted parts of the CREATE TABLE ... AS subquery;
code that are not directly related to
the example
SELECT col 1, col2, ... , coln FROM

« That you can repeat a portion of the enpl oyees:

code

Vertical ellipsis points indicate that we SQL> SELECT NAME FROM V$DATAFI LE;
have omitted several lines of code not NAVE
directly related to the example.

/fsl/dbs/tbs_01. dbf
/fs1/ dbs/tbs_02. dbf

Its1/dbs/tbs_09. dbf
9 rows sel ected.

Other notation You must enter symbols other than acct bal NUMBER(11, 2);

brapkets, braces, vertical bars, and ellipsis acct CONSTANT NUMBER(4) : = 3:
points as shown.

Italics Italicized text indicates placeholders or CONNECT SYSTEM syst em password

variables for which you must supply DB NAME = database name
particular values. — = _

UPPERCASE Uppercase typeface indicates elements SELECT | ast _name, enpl oyee_id FROM
supplied by the system. We show these enpl oyees;
terms in uppercase in order to distinguish SELECT * FROM USER TABLES:
them from terms you define. Unless terms - ’
appear in brackets, enter them in the DROP TABLE hr. enpl oyees;
order and with the spelling shown.
However, because these terms are not
case sensitive, you can enter them in
lowercase.

| ower case Lowercase typeface indicates SELECT | ast _nane, enpl oyee_id FROM
programmatic elements that you supply. enpl oyees;

For example, lowercase indicates names
of tables, }(C:)olumns, or files. sql plus hr/hr
. CREATE USER njones | DENT Fl ED BY t y3MB;
Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.

Enter these elements as shown.

XXXi

Documentation Accessibility

XXXii

Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle Corporation is actively engaged with other
market-leading technology vendors to address technical obstacles so that our
documentation can be accessible to all of our customers. For additional information,
visit the Oracle Accessibility Program Web site at

http:// ww. oracl e. com accessi bility/

Accessibility of Code Exam ples in Documentation JAWS, a Windows screen
reader, may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, JAWS may not always read a line of text that
consists solely of a bracket or brace.

Accessibility of Links to External ~ Web Sites in Documentation This
documentation may contain links to Web sites of other companies or organizations
that Oracle Corporation does not own or control. Oracle Corporation neither
evaluates nor makes any representations regarding the accessibility of these Web
sites.

What's New in Oracle OLAP?

Oracle9i Release 2 provides multidimensional analysis within the Oracle database.
Oracle OLAP is the next generation of analytical engines and related software,
providing an upgrade path from Oracle Express Server release 6.3.

See Also:

= Appendix A, "Upgrading From Express Server" for specific
differences between Express Server and Oracle OLAP.

« Oracle9i OLAP Developer’s Guide to the OLAP DML for changes
to the OLAP data manipulation language.

The following sections describe the new features in Oracle9i OLAP:

» Oracle9i Release 2 (9.2) New Features in Oracle OLAP

XXXiii

Oracle9i Release 2 (9.2) New Features in Oracle OLAP

The following list briefly describes the new features of Oracle OLAP.

XXXiV

Oracle OLAP is integrated with the Oracle database
The OLAP engine runs in the Oracle kernel, and analytic workspaces are stored

as LOBs in relational tables.

See Also: "The Oracle9i Integrated Relational-Multidimensional
Database" on page 1-4
Oracle OLAP management tools are integrated with Oracle

The Oracle DBA uses one set of management tools for both the Oracle database
and Oracle OLAP.

See Also: Chapter 6, "Administering Oracle OLAP"

SQL applications can access multidimensional data

SQL applications can use the database table functions to access and manipulate
data directly in the multidimensional OLAP data cache. Alternatively, relational
views can be created for multidimensional data, which provides access to
standard SQL.

See Also: Chapter 3, "Developing OLAP Applications"

Tools simplify creation of analytic workspaces and related views

Tools are available to help move data from relational tables into
multidimensional objects in an analytic workspace, and to generate views of
these objects so that applications can access workspace data using standard
SQL.

See Also:

= Chapter 9, "Creating an Analytic Workspace From Relational
Tables"

= Chapter 15, "CWM2_OLAP_AW_ACCESS"

Applications can use OCI or JDBC to connect to Oracle OLAP

OLAP applications that used SNAPI communications in Express Server 6.3 and
earlier can upgrade to Oracle OLAP without substantially changing the
application’s Express language-based architecture.

See Also: Chapter 1, "Overview"

OLAP APl is available for developing Java applications

The Oracle OLAP APl is an all-Java application programming interface that is
designed specifically to support multidimensional analysis.

See Also: Chapter 3, "Developing OLAP Applications"

OLAP Catalog API supports third-party applications development

PL/SQL interfaces to the OLAP Catalog allow developers to query and update
the logical multidimensional metadata model and map it to physical relational
and analytic workspace data.

See Also: Chapter 5, "Creating OLAP Catalog Metadata"

OLAP metadata provides extended schema support

The Oracle OLAP Catalog metadata supports star, snowflake, and
multidimensional schema. The metadata supports level-based, parent-child,
and complex dimension hierarchies.

See Also: Chapter 5, "Creating OLAP Catalog Metadata"

Oracle Globalization Support extended to Oracle OLAP

Oracle Globalization Support provides the Oracle standard for internationalizing
and localizing Oracle products. The character set encoding supports Unicode using
the UTEF-8 standard, which is a format that transforms all Unicode characters into a
variable-length encoding of bytes. Its use in the database and Oracle OLAP allows
text data in native languages to be passed between them without data loss or
performance degradation.

See Also: Oracle9i Database Globalization Support Guide

XXXV

XXXVi

Part |

The Basics

Part I contains basic information about multidimensional analysis. It is of interest to
anyone who may use Oracle OLAP as a database administrator, an applications
developer, or an end user.

This part contains the following chapters:

Chapter 1, "Overview"

Chapter 2, "Manipulating Multidimensional Data"
Chapter 3, "Developing OLAP Applications"
Chapter 4, "Designing Your Database for OLAP"
Chapter 5, "Creating OLAP Catalog Metadata"

1

Overview

This chapter explains the basics of using Oracle OLAP and related client software
for analytical applications. By reading this chapter, you will get an overview of its
features.

This chapter includes the following topics:

« Why OLAP?

= The Oracle9i Integrated Relational-Multidimensional Database
= Components of Oracle OLAP

= Applications Access to Oracle OLAP

Overview 1-1

Why OLAP?

Why OLAP?

Relational databases have dominated database technology by providing the online
transactional processing (OLTP) that is essential for businesses to keep track of their
affairs. Designed for efficient selection, storage, and retrieval of data, relational
databases are ideal for housing gigabytes of detailed data.

The success of relational databases is apparent in their use to store information
about an increasingly wide scope of activities. As a result, they contain a wealth of
data that can yield critical information about a business. This information can
provide a competitive edge in an increasingly competitive marketplace.

Analytical Processing Answers Business Questions

The challenge is in deriving answers to business questions from the available data,
so that decision makers at all levels can respond quickly to changes in the business
climate. While a standard transactional query might ask, “When did order 84305
ship?” a typical series of analytical queries might ask, “How do sales in the
Southwestern region for this quarter compare with sales a year ago? What can we
predict for sales next quarter? What factors can we alter to improve the sales
forecast?”

The transactional query involves simple data selection and retrieval. However, the
analytical queries involve inter-row calculations, time series analysis, and access to
aggregated historical and current data. This is online analytical processing — OLAP.

The data processing required to answer analytical questions is fundamentally
different from the data processing required to answer transactional questions.
Table 1-1 highlights the major differences.

Table 1-1 Characteristics of Transactional And Analytical Queries

Characteristic Transactional Query Analytical Query
Typical operation Update Analyze
Age of data Current Historical
Level of data Detail Aggregate
Data required per query =~ Minimal Extensive
Querying pattern Individual queries Iterative queries

1-2 Oracle9i OLAP User's Guide

Why OLAP?

Types of OLAP Applications

Applications that support business analyses fall into these major groups:
= Standard reporting

= Ad-hoc query and reporting

= Multidimensional analytical reporting

= Predictive analysis and planning

Oracle provides the technology for all of these types of applications. Oracle OLAP
and its development tools are particularly suited to analytical reporting and
predictive analysis applications. This guide will introduce you to the tools for
developing these types of applications.

Analytical Reporting

Analytic applications can support many facets of a business and offer high returns
on the investment. Here are just a few examples of analytical applications:

= Accounting. Forecasting, budgeting, cost and profitability analyses, and
consolidation

= Human Resources. Skills consolidation, labor scheduling and optimization
= Distribution. Scheduling and optimization

= Sales Force Automation. Cross-selling and territory analyses

= Marketing. Churn and market-based analyses

= Retailing. Site location and demographic analyses

= Manufacturing. Demand planning and forecasting

= Health Care. Outcomes analysis

= Financial Services. Risk assessment and management

Predictive Analysis

Planning applications allow organizations to predict outcomes. They generate new
data using predictive analytical tools such as models, forecasts, aggregation,
allocation, and scenario management. Some examples of this type of application are
corporate budgeting and financial analyses, and demand planning systems.

Budgeting and financial analyses systems allow organizations to analyze past
performance, build revenue and spending plans, manage toward profit goals, and

Overview 1-3

The Oracle9i Integrated Relational-Multidimensional Database

model the effects of change on the financial plan. Management can determine
spending and investment levels that are appropriate for the anticipated revenue and
profit levels. Financial analysts can prepare alternative budgets and investment
plans contingent on factors such as fluctuations in currency values.

Demand planning systems allow organizations to predict market demand based on
factors such as sales history, promotional plans, pricing models, and so forth. They
can model different scenarios that forecast product demand and then determine
appropriate manufacturing goals.

The Oracle9i Integrated Relational-Multidimensional Database

Oracle provides multidimensional technology within the database. Organizations
no longer need to choose between a multidimensional OLAP database and a
relational database. By integrating OLAP into the database, Oracle provides the
power of a multidimensional database while retaining the manageability, scalability,
and reliability of the Oracle database and the accessibility of SQL. The Oracle
database provides the functionality of a specialized analytic database while
eliminating the need for a separate database system.

The advantages of a single integrated relational-multidimensional database when
compared to two separate relational and multidimensional databases are many:

« Simplified management. All management tasks are consolidated into a single
database and can be managed through Oracle Enterprise Manager or PL/SQL.

= High availability. Oracle OLAP has the same scalability and high reliability as
the Oracle database, including support for Real Application Clusters and Oracle
Data Guard. Real Application Clusters allow multiple instances of the database
to work cooperatively against a single disk image of the database. When more
processing power is needed, another server can be added to the cluster. If a
server fails, then another server automatically takes over. Oracle Data Guard
protects against complete site failure, for instance, in the event of an
unprotected power failure. In the event of site failure, Oracle Data Guard
automatically switches to a backup instance at a different site.

« High security. Oracle provides complete security to all data in the database,
including multidimensional data. All users are defined in a single user catalog
and are assigned privileges using standard security features such as roles and
privileges. More finely grained access privileges can also be granted.

= Open access. Both relational and multidimensional data can be accessed
through SQL and the OLAP API. Application developers can choose to use the
calculation and data navigation features of the OLAP AP], or they can leverage

1-4 Oracle9i OLAP User's Guide

Components of Oracle OLAP

their investment in SQL to access multidimensional data. Any OLAP
calculation can be queried using SQL. Standard reporting applications can
present the results of complex multidimensional calculations. Ad-hoc querying
tools can provide new calculation functions.

Reduced update time. Oracle allows data to be stored in either relational or
multidimensional tables and provides access to both through SQL and the
OLAP API Thus, data does not need to be replicated in two data stores. The
typical two-step data maintenance process (update the data warehouse, then
update the multidimensional database) is now reduced to a single step. The
result is a corresponding reduction in the interval between the time the data is
available from the source system and the time the data is available to users for
analyses.

Improved data reliability. Because data does not need to be replicated between
the relational tables and multidimensional tables, it cannot get out of
synchronization. All users have access to the same version of the data as soon as
changes are committed to the database.

The Oracle relational database and Oracle OLAP provide complementary
functionality to support the most versatile and high performance applications. The
database and SQL engine provide detail data, summary management, and
one-dimensional calculations using the SQL-99 OLAP extensions. Oracle OLAP
expands these capabilities to provide forecasting, modeling, what-if scenarios, and
multidimensional calculations.

Components of Oracle OLAP

Analytical queries and predictive analyses require a multidimensional OLAP
solution. Oracle OLAP consists of the following components:

Calculation engine
Analytic workspaces
OLAP DML

PL/SQL table functions
OLAP API

OLAP Catalog metadata

This guide explains the relationships among these components from the
perspectives of both database administrators and application developers.

Overview 1-5

Components of Oracle OLAP

Calculation Engine

The OLAP calculation engine supports the selection and rapid calculation of
multidimensional data. The status of an individual session persists to support a
series of queries, which is typical of analytical applications; the output from one
query is easily used as input to the next query. The OLAP engine runs within the
Oracle kernel.

Analytic Workspace

OLAP DML

An analytic workspace stores multidimensional data objects and procedures written
in the OLAP DML. Within a single database, many analytic workspaces can be
created and shared among users. Like relational tables, an analytic workspace is
owned by a particular user ID, and other users can be granted access to it. Because
individual users can save a personal copy of their alterations to a workspace, the
workspace environment is particularly conducive to planning applications.

An analytic workspace can be temporary (that is, for the life of the session) or it can
be persistent, that is, saved from one session to the next. When an analytic
workspace is persistent, the data is stored as LOBs in database tables. Analytic
workspaces also provide an alternative to materialized views as a means of storing
aggregate data.

The OLAP DML is a data manipulation language that is understood by the Oracle
OLAP calculation engine. The OLAP DML extends the analytical capabilities of
querying languages such as SQL and the OLAP API to include forecasting,
modeling, and what-if scenarios. Application developers can create stored
procedures that use conditional logic and the extensive library of DML commands
and functions to perform complex analyses of data. Moreover, the OLAP DML is a
very accessible calculation language, similar to that of a spreadsheet, which is easy
for power users and DBAs to learn and use.

OLAP DML commands and functions include the following categories:

Aggregation

Allocation

Data Selection

Date and Time Operations
File Reading and Writing
Financial Operations
Forecasts and Regressions

1-6 Oracle9i OLAP User’s Guide

Components of Oracle OLAP

Numeric Manipulation
Models

Statistical Operations
Text Manipulation

Time Series Manipulation

Both the OLAP API and PL/SQL can embed OLAP DML commands in their
syntax.

Using the OLAP DML, database administrators and application developers can
create multidimensional data objects that are stored in an analytic workspace. The
OLAP DML operates on data that is stored (permanently or temporarily) in these
multidimensional objects.

See Also: Chapter 2, "Manipulating Multidimensional Data" for
more information about using the OLAP DML.

SQL Table Functions

OLAP API

SQL table functions can take a set of rows as input and produce a set of rows as
output that can be queried like a physical database table. Application developers
who use SQL can access SQL packages that use table functions to create views of
multidimensional data. SQL applications can then access these views. Thus, the
calculation engine and multidimensional data sources are accessible to SQL, making
analytic and predictive functions available to SQL-based applications. SQL
applications can connect to the database using either the Oracle Call Interface (OCI)
or Java Database Connectivity (JDBC).

See Also: Chapter 3, "Developing OLAP Applications" for more
information about using SQL table functions.

The Oracle OLAP APlis an application programming interface to Oracle OLAP. It is
a querying language that selects and manipulates data for display in a Java client.
Because the OLAP APl is all Java, it supports deployment of analytical applications
to large, geographically distributed user communities on the Internet. It is object
oriented, so that application developers define the results they want, not the process
by which the results are obtained. The OLAP API connects to the database using
JDBC.

The OLAP APl is the technology underlying the Oracle BI Beans for access to
relational and multidimensional data. JavaBeans are the building blocks of

Overview 1-7

Applications Access to Oracle OLAP

application development. They are reusable pieces of Java code that can be
assembled quickly into an application. The Oracle BI Beans provide pre-built
OLAP-aware application building blocks: Connecting to a database; authenticating
user credentials; selecting and fetching data; and displaying the data in a variety of
tabular and graphical formats. Using the BI Beans, developers can create
applications with a common “look and feel,” enabling users to gain expertise
quickly in the new product.

The BI Beans can be used within Oracle JDeveloper or other Java development

environments to build analytical applications, which can be deployed as either Java
or HTML clients.

See Also: Chapter 3, "Developing OLAP Applications" for a more
detailed introduction to the OLAP API and the BI Beans.

OLAP Catalog

Metadata is typically defined as “data about data.” OLAP Catalog metadata is
created and stored in relational tables in the database. OLAP applications can query
this metadata repository to find out what data is available for analyses and display.
The metadata contains information about the physical location of the data, that is,
whether it is stored in a relational table or in an analytic workspace. The application
does not need to be aware of the location of the data or alter its processing to
accommodate the storage location. Since the data is queried using SQL, data from
relational data and multidimensional data can be joined in a single SQL query.

Whether the data is stored in a relational schema or in an analytic workspace, the
metadata identifies the data in terms of the multidimensional objects: measures,
dimensions, levels, and attributes. The metadata provides information critical to the
selection, manipulation, and display of that data.

See Also: Chapter 4, "Designing Your Database for OLAP" for
information about creating OLAP metadata.

Applications Access to Oracle OLAP

On a very basic level, all applications have access to analytic workspaces and the
computational engine using SQL, but the application can be unaware of the SQL or
unaware of the underlying OLAP facilities. They all use OCI or JDBC for their
communications protocol.

However, at a higher level, different types of applications can access the
computational power of Oracle OLAP in different ways.

1-8 Oracle9i OLAP User's Guide

Applications Access to Oracle OLAP

= OLAP API clients are written in Java, which the SQL generator in Oracle OLAP
converts to SQL. The application developer does not need to be familiar either
with SQL or the OLAP DML.

= SQL-based applications can use pure SQL against relational views of
multidimensional data. The application developer only needs to know SQL and
the language of the user interface, such as C++. However, an application
developer who is familiar with the OLAP DML can manipulate
multidimensional data directly using DML commands embedded in SQL table
functions.

« OLAP applications can operate directly on multidimensional data by making
use of the conditional processing capabilities of stored procedures written in the
OLAP DML.

Figure 1-1 illustrates these methods.

Overview 1-9

Applications Access to Oracle OLAP

Figure 1-1 Methods of Querying Analytic Workspaces

vi ew

select * from

Relational

1-10 Oracle9i OLAP User’s Guide

View

Table Function

Object Type

OLAP
Engine

OLAP DML

Analytic
Workspace
Object

OLAP API Generic SQL OLAP Aware Direct SQL
Application Application SQL Application Application
JDBC OCl or JDBC OCl or JDBC OCl or JDBC
select * from | select * from DBMVS_AW PL/SQL
Vi ew table function | Package with DML
SQL Generator FETCH

2

Manipulating Multidimensional Data

This chapter provides an overview of data manipulation using the OLAP DML. It
includes the following topics:

« WhatIs the OLAP DML?
= Basic Categories of OLAP DML Commands
= Methods of Executing OLAP DML Commands

Manipulating Multidimensional Data 2-1

What Is the OLAP DML?

What Is the OLAP DML?

The OLAP DML is a data manipulation language. You can use DML commands and
functions to perform complex analysis of data. You can also write stored procedures
that contain DML commands and functions.

Extensive Analytic Capabilities

The OLAP DML enables application developers to extend the analytical capabilities
of querying languages such as SQL and the OLAP API. These are some situations in
which you might use the OLAP DML:

When you need to calculate data that cannot be calculated as part of your data
warehouse extraction, transformation, and load (ETL) process or in SQL.
Examples include forecasts, solving a model, some types of consolidations
(aggregations), and allocations.

When your application needs to perform various calculations, but you do not
want to immediately commit the results in SQL tables. For example, you might
have a forecasting application where you want to allow users to save personal
forecasts and reuse them during a later session, but you do not want users to
commit the forecast to the SQL tables. Instead, you can just commit the data to
the analytic workspace without committing it to SQL tables.

When you want to manipulate data that is stored in an analytic workspace. An
analytic workspace can be an alternative to materialized views for storing
aggregate data. It may also be the preferred storage location for data that is
frequently used in business analyses such as models and forecasts.

See Also:

« Oracle9i OLAP Developer’s Guide to the OLAP DML

« Oracle9i OLAP DML Reference help

2-2 Oracle9i OLAP User's Guide

What Is the OLAP DML?

Features of the Multidimensional Model

There are inherent features of the multidimensional model that make it an
appropriate environment for business intelligence. The multidimensional model:

Enforces referential integrity. Each dimension member is unique and cannot be
NA. If a measure has three dimensions, then each data value of that measure
must be qualified by a member of each dimension.

Promotes consistency. Dimensions are maintained as separate workspace
objects and are shared by measures.

Preserves the order of data. Each dimension has a default status list, which
contains all of its members in the order they are stored. The default status list is
always the same unless it is purposefully altered by adding, deleting, or
moving members. Within a session, the user can change the selection and order
of the status list; this is called the current status list. The current status list
remains the same until the user purposefully alters it by adding, removing, or
changing the order of its members.

Because the order of dimension members is consistent and known, the selection
of members can be relative. For example, the function call

| ag(sal es, 12, nonth)

compares the sales values of all months in the current status list against sales
from a year ago (that is, 12 time periods earlier in the default status list for the
nont h dimension).

Presents data as fully solved. Applications do not need to define calculations.
Because of the combination of power and ease-of-use of the OLAP DML, the
analytic workspace can be prepared so that the data is presented as fully solved
to the application.

Manages calculated members and measures transparently. Users can define
their own dimension members (often called custom aggregates), which function
identically to the other dimension members and can be used transparently in
any calculation. Similarly, users can define their own measures and assign
values to them using any of the methods available in the OLAP DML.
Throughout the session, these additions behave identically to the dimension
members and objects originally provided in the workspace. Users can save their
changes from one session to the next with a single DML command.

Manipulating Multidimensional Data 2-3

Basic Categories of OLAP DML Commands

Basic Categories of OLAP DML Commands

Aggregation

Allocation

Following are descriptions of some of the basic categories of OLAP DML
commands and functions.

The OLAP DML supports a variety of aggregation methods including first, last,
average, weighted average, and sum. In a multidimensional data object, the
aggregation method can vary by dimension. Some of the data can be aggregated
and stored, while other data is aggregated at runtime. A technique called “skip
level” aggregation pre-aggregates every other level in a dimension hierarchy. The
DBA can choose whatever method seems appropriate: by level, individual member,
member attribute, time range, data value, or other criteria.

Allocations are a critical part of planning applications. Given a target for the
organization — whether for sales quota, product growth, salary, or equipment —
managers must allocate that target among its contributors. Some of the key features
of the allocation system are:

= Support for hierarchies so the data is distributed based on parentage.

= Support for arbitrary selections so that data is distributed among selected
members, regardless of parentage or in the absence of a hierarchy.

= A variety of allocation methods, including:
= Copy methods (hierarchical copy, minimum, maximum, first, last)
« Even distribution (even, hierarchical even)

= Proportional distribution (including weighted distributions and
user-defined multidimensional functions.

= Cell-level locking prevents certain cells from being overwritten by the
allocation. This feature is used when some values for the planning period are
known.

= Logging records how far an allocation has progressed and whether any errors
have occurred.

2-4 Oracle9i OLAP User's Guide

Basic Categories of OLAP DML Commands

Data Selection

Data selection within the analytic workspace is persistent throughout a session,
which is a feature that supports the iterative nature of analytic queries. Users can
select data in multiple steps, with each step refining the previous query. The OLAP
DML provides data selection methods that are specifically designed for
multidimensional data, such as hierarchical relations, levels of aggregation,
attributes, time series functions, and data values.

Data Exchange

SQL statements can be embedded in the OLAP DML, which allows applications to
select data from SQL tables and write data back to them. This can be done at
runtime or as a data maintenance procedure. Access to SQL tables is controlled by
the privileges and roles granted to the user’s database ID.

The following embedded SQL statements define a cursor and fetch data from a
relational table named pr oduct s into a workspace dimension named pr od and a
measure named pr od_| abel .

SQL DECLARE hi ghprice CURSCR FOR SELECT prod_id, prod_name -
FROM product s WHERE suggested_price > :set_price

SQL OPEN hi ghprice

SQL FETCH hi ghprice LOOP INTO : prod, :prod_| abel

File Reading and Writing

Data can be read from flat files or spreadsheets into multidimensional objects. This
is typically done as a data maintenance procedure. Access to external files is
controlled by BFILE security. DBAs can set up aliases for directories and control
which users and groups can use those aliases, as described in "Controlling Access to
External Files" on page 6-10. The security system does not allow users to access
directories without an alias.

The following program copies data from a file named uni t and stores it in a
dimensions named nont h and pr oduct i d and variables named pr oduct nane
and uni t s. sol d. The DBA previously created a directory alias named nydat .

DEFI NE read. product PROGRAM

PROGRAM

VARI ABLE fi | NT "Define a local integer variable

fi = FILEOPEN(' nydat/unit' READ) "Store a file handle in the variable

Manipulating Multidimensional Data 2-5

Basic Categories of OLAP DML Commands

FI LEREAD fi COLUW 1 WDTH 5 nonth -
COLUW 6 WDTH 6 productid -
COLUW 12 WDTH 30 product nane -
COLUW 44 WDTH 22 units.sold

FI LECLCSE fi

END

The next example creates a file named cust om ei f as a private data store that
contains the data and definitions for a custom measure named nysal es. The user
can import nysal es during another session.

EXPORT nysal es TO EIF FILE 'userdat/customeif’ DATA DFNS

Financial Operations

The financial functions include interest rate calculations, depreciation, and payment
schedules, similar to those provided in spreadsheets.

For example, the FPMI'SCHED function calculates a payment schedule (principal
plus interest) for paying off a series of fixed-rate installment loans over a specified
number of time periods. The following call to FPMI'SCHED calculates 36 payments
based on the amounts listed in the | 0ans variable, at the interest rates listed in the
r at es variable, for the nont h dimension of these variables.

FPMISCHED(| oans, rates, 36, nonth)

Forecasts and Regressions

The OLAP DML offers the most sophisticated and up-to-date forecasting and
regression tools of Roadmap Geneva Forecasting, including simple linear
regressions, non-linear regression methods, single exponential smoothing, double
exponential smoothing, and the Holt-Winters method.

For example, the following FORECAST command uses the EXPONENTIAL method
to forecast sales for the next 12 months based on historical data stored in the sal es
measure. It stores the results of the calculation in a second measure named

fcst. sal es.

FORECAST LENGTH 12 METHOD EXPONENTI AL FCNAME fcst.sales TIME nonth sal es

2-6 Oracle9i OLAP User's Guide

Basic Categories of OLAP DML Commands

Models

A model is a set of interrelated equations. These are some of the modeling features
supported by the OLAP DML:

= You can perform calculations for individual dimension members following
unique calculation rules.

= Oracle OLAP determines the order of the calculations, so you can list them in
any order without concern for dependencies.

= Oracle OLAP solves simultaneous equations.

You can assign results either to a variable or to a dimension member.
Dimension-based equations provide flexibility; since you do not need to specify the
modeling variable until you solve a model, you can run the same model with any
other measure with the same dimension. For example, you could run the same
model on budget and act ual , which both have a | i ne dimension.

The following is an example of a modeling program.

"cost of goods’ = 'raw materials’+l abor+ fixed overhead’

"fixed overhead’ = 'capital equipment’+ building costs’

"buil ding costs’ = 'building depreciation’ +el ectric+heat +mai nt enance
"labor’ = sal ary+benefits

"capital equipnent’ = 'equipment maintenance’ + equi pnent depreciation’

Numeric Computations

Functions are available to perform a wide variety of computations (such as sine,
cosine, square root, minimum, and maximum) and data type conversions.

For example, the CEI L function returns the smallest whole number greater than or
equal to a specified number. The function call

CEl L(- 6. 457)

returns a value of - 6.

Manipulating Multidimensional Data 2-7

Methods of Executing OLAP DML Commands

Statistical Operations

Statistical operations include standard deviation, rank, and correlation. For
example, the STDDEV function calculates the standard deviation. The function call

STDDEV(uni ts nont h)

returns the standard deviation of values in the uni t s measure for all months that
are currently selected.

Text Manipulation

The OLAP DML provides support for manipulating both single- and multibyte
character sets, with functions for concatenating strings, locating a string within a
larger body of text, inserting a string, and so forth.

For example, the EXTCHARS function extracts a portion of text. The function call

EXTCHARS(' | ast name, firstname’, 1,8)

extracts the first 8 characters, which contains the characters

| ast nane

Time Series Manipulation

The time series functions perform operations such as lead, lag, and moving average.
For example, the MOVI NGTOTAL function calculates a series of totals over time. The
following example returns a 3-month total on the sal es measure for all currently
selected months.

MOVI NGTOTAL(sal es, -2, 0, 1, nonth)

Methods of Executing OLAP DML Commands

The OLAP DML can be used when you want to perform calculations that are not
easily accomplished in the ETL process or using SQL (either directly or using the
OLAP API). The results can be calculated as part of the data warehouse build and
update process, and can optionally be written to SQL tables. Alternatively,
applications developers can create OLAP DML programs using the OLAP
Worksheet and execute them by embedding OLAP DML in their SQL- or Java-based
applications.

2-8 Oracle9i OLAP User's Guide

Methods of Executing OLAP DML Commands

OLAP Worksheet: The OLAP DML Development Tool

OLAP Worksheet is an interactive command line interface to Oracle that you can
use to perform the following tasks:

Connect to an analytic workspace

Execute OLAP DML commands

Execute SQL statements

Create and populate data objects

Create, modify, compile, and execute OLAP DML programs

OLAP Worksheet has a command input window and a program edit window.

Procedure: Open OLAP Worksheet
To open OLAP Worksheet, use the following steps:

1.
2.
3.
4.

In Enterprise Manager, connect to a database that is enabled for OLAP.
Expand the database.
Choose Warehouse.

From the right mouse menu, choose Oracle OLAP Worksheet.

Once you have opened OLAP Worksheet, you can use its menus to establish a
connection to Oracle, open a workspace, execute OLAP DML commands, execute
SQL statements, or write OLAP DML programs, save any changes, and close the
connection.

Embedding OLAP DML Commands in Programs

Applications developers can embed OLAP DML in their SQL- or Java-based
applications:

In SQL programs, you can embed OLAP DML commands using the procedures
in the DBM5_AWpackage.

In Java programs, you can embed OLAP DML commands using the
SPLExecut or class in the OLAP APL

Manipulating Multidimensional Data 2-9

Methods of Executing OLAP DML Commands

See Also:

= Oracle9i OLAP Developer’s Guide to the OLAP DML for further
information about the OLAP DML and the OLAP Worksheet

= OLAP API Javadoc for a description of the SPLExecut or class.

= Chapter 11, "DBMS_AW" for descriptions of the procedures in
the DBMS_AW package.

2-10 Oracle9i OLAP User’s Guide

3

Developing OLAP Applications

This chapter presents the rich development environment and the powerful tools
that you can use to create OLAP applications. It includes the following topics:

Building SQL-Based OLAP Applications
Building Analytical Java Applications
Introducing the BI Beans
Understanding the OLAP API

Developing OLAP Applications 3-1

Building SQL-Based OLAP Applications

Building SQL-Based OLAP Applications

SQL-based applications can access multidimensional data, which is stored in
analytic workspaces. Two mechanisms in the database’s object technology make
this possible:

= Object types (also called abstract data types or ADT) are the basis for
object-oriented programming in PL/SQL. An object type encapsulates a data
structure along with the functions and procedures needed to manipulate the
data. When you define an object type using the CREATE TYPE statement, you
create an abstract template that corresponds to a real-world object.

In OLAP, these “real-world objects” are measures, dimensions, hierarchies,
attributes, and so forth. By defining object types for the objects in an analytic
workspace, you can describe the format of multidimensional data to SQL as
rows and columns.

» Table functions produce a collection of rows that can be queried like a physical
database table. You use a table function instead of the name of a database table,
in the FROMclause of a query. A table function can take a collection of rows as
input.

You can use table functions to fetch data from objects in an analytic workspace.
The table functions require arguments that are passed to the OLAP engine,
which selects, manipulates, and returns the data. By incorporating table
functions into your application, you have the most power and flexibility in
selecting and manipulating data in the analytic workspace.

If you overlay the table functions with relational views, then you can make the table
functions (and thus the source of the data) transparent to SQL-based applications.
Your applications can use standard SQL to run against these views of
multidimensional data, the same way that they access other relational tables and
views in the database.

See Also: PL/SQL User’s Guide and Reference for detailed
information about object types and table functions.

Figure 3-1 shows how a SQL application can access multidimensional data (using
table functions and views) as well as relational data.

3-2 Oracle9i OLAP User's Guide

Building SQL-Based OLAP Applications

Figure 3-1 Components of a SQL-Based Analytical Application

SQL Applications

SQL '_II

Relational
Views

SQL

Table Function

Object Type

SQL

OLAP
Calculation
Engine

Relational
Tables

OLAP DML

Analytic
Workspace
Objects

Methods of Accessing Multidimensional Data From SQL

There are several ways that SQL can access the multidimensional data of an analytic
workspace. An abstract data type and the table functions underlie all of them. The
method that you choose depends on how you want to use the data.

= Use the CWW2_OLAP_AW CREATE package to create the analytic workspace
from a star schema. Use other procedures in this package to define a star
schema of dimension views and fact views, which represent the measures,
dimensions, hierarchies, and attributes in the analytic workspace. You can then
query these views using standard SQL SELECT statements. You can use other
CWWR APISs to create OLAP Catalog metadata based on these views.

= If your analytic workspace did not originate from the AW CREATE process, you
can use the CWWR_OLAP_AW ACCESS PL/SQL package to generate views of the

workspace.

Developing OLAP Applications 3-3

Building Analytical Java Applications

= Write object type definitions and then make relational queries and views of the
analytic workspace data by using the OLAP_TABLE function in SQL SELECT
statements. This method is more complex than using CWWR_OLAP_AW CREATE
or CWW2_OLAP_AW ACCESS, but it provides more flexibility and power in an
application than using predefined views.

See Also:

= Chapter 9, "Creating an Analytic Workspace From Relational
Tables"

= Chapter 11, "DBMS_AW"
« Chapter 15, "CWM2_OLAP_AW_ACCESS"

Embedding OLAP DML Commands in SQL

Using the procedures and functions in the DBM5_AWpackage, SQL programmers
can issue OLAP DML commands directly against analytic workspace data. They
can move data from relational tables into an analytic workspace, perform advanced
analysis of the data (for example, forecasting), and copy data from the analytic
workspace back into relational tables.

While the data is in the analytic workspace, SQL programmers can also issue
SELECT statements against the data in the analytic workspace using the
OLAP_TABLE function.

See Also: Chapter 11, "DBMS_AW"

Building Analytical Java Applications

About Java

Java is the language of the Internet. Using Java, an application developer can write a
standalone application or an applet, which is a program that can be included in an
HTML page and executed in a browser.

Java is the preferred programming language for an ever-increasing number of
professional software developers. For those who have been programming in C or
C++, the move to Java is easy because it provides a familiar environment while
avoiding many of the shortcomings of the C language. Developed by Sun
Microsystems, Java is fast superseding C++ and Visual Basic as the language of
choice for application developers for the following reasons:

3-4 Oracle9i OLAP User's Guide

Building Analytical Java Applications

= Object oriented. Java allows application developers to focus on the data and
methods of manipulating that data, rather than on abstract procedures; the
programmer defines the desired object rather than the steps needed to create
that object. Almost everything in Java is defined as an object.

« Platform independent. The Java compiler creates byte code that is interpreted at
runtime by the Java Virtual Machine (JVM). As the result, the same software can
run on all Windows, Unix, and Macintosh platforms where the JVM has been
installed. All major browsers have the JVM built in.

= Network based. Java was designed to work over a network, which allows Java
programs to handle remote resources as easily as local resources.

= Secure. Java code is either trusted or untrusted, and access to system resources
is determined by this characteristic. Local code is trusted to have full access to
system resources, but downloaded remote code (that is, an applet) is not
trusted.

The Java “sandbox” security model provides a very restricted environment for
untrusted code. For example, untrusted Java code cannot read to or write from
files on the local file system, run programs, load libraries, define native method
calls, or make network connections except to the originating host computer. A
security manager determines the system resources that an applet can access.
However, a signed applet, which identifies itself as being from a trusted source,
has full access to system resources the same as local code.

Deploying Java Applications

With the rise in Internet technology, more and more businesses are recognizing the
savings they can accrue just by changing the way they deploy their applications.

Traditional thick client applications implement many of their functions on the
user’s computer, thus requiring a large proportion of installed code. However, the
days are gone when a team of technicians are required to install and maintain
applications software on hundreds or thousands of individual desktop computers
for a large user base. Instead, Java thick-client applications download the needed
software to client computers automatically at run-time.

Alternatively, system administrators can deploy thin client applications that do not
download any Java to client computers. These applications run on servers that users
world wide can access using Java clients such as their Web browsers. By deploying
thin client business intelligence applications on the Internet, businesses can
distribute information both within their enterprise and externally to suppliers and
customers.

Developing OLAP Applications 3-5

Building Analytical Java Applications

Regardless of whether you choose a thick-client or a thin-client configuration, Java
applications provide an immediate solution to the problems inherent in supporting
large user communities, which typically are equipped with a variety of
incompatible hardware and software platforms.

The Java Solution for OLAP

To develop an OLAP application, you can use the Java programming language. Java
enables you to write applications that are platform-independent and easily
deployed over the Internet.

The OLAP APl is a Java-based application programming interface that provides
access to multidimensional data for analytical business applications. The OLAP API
fetches data stored in a data warehouse into the OLAP multidimensional data cache
for manipulation by its analytical engine. Java classes in the OLAP API provide all
of the functions required of an OLAP application: Connection to an OLAP instance;
authentication of user credentials; access to data in the RDBMS controlled by the
permissions granted to those credentials; and selection and manipulation of that
data for business analysis.

The BI Beans simplify application development by providing these functions as
JavaBeans. Moreover, the Bl Beans include JavaBeans for presenting the data in
graphs, crosstabs, and tables.

Note: Oracle JDeveloper and the BI Beans are applications and are
not packaged with the Oracle RDBMS.

Oracle Java Development Environment

Oracle JDeveloper provides an integrated development environment (IDE) for
developing Java applications. Although third-party Java IDEs can also be used
effectively, only JDeveloper achieves full integration with the Oracle database and
BI Beans wizards. The following are a few JDeveloper features:

= Remote graphical debugger with break points, watches, and an inspector.
= Multiple document interface (MDI)
« Codecoach feature that helps you to optimize your code

« Generation of 100% Pure Java applications, applets, servlets, Java beans, and so
forth with no proprietary code or markers

« Oracle database browser

3-6 Oracle9i OLAP User's Guide

Introducing the Bl Beans

For more information about the Java programming language, browse the Sun
Microsystems Java Web site at ht t p: / / j ava. sun. com For information about
JDeveloper, search the Oracle Web site at ht t p: / / www. or acl e. com

Note: Oracle JDeveloper is an application and is not packaged
with the Oracle RDBMS.

Introducing the Bl Beans

The BI Beans provide reusable components that are the basic building blocks for
OLAP decision support applications. Using the BI Beans, developers can rapidly
develop and deploy new applications, because these large functional units have
already been developed and tested — not only for their robustness, but also for
their ease of use. And because the Bl Beans provide a common look and feel to
OLAP applications, the learning curve for end users is greatly reduced.

Two groups of Bl Beans are currently available:

= Presentation Beans display the data in a rich variety of formats so that trends
and variations can easily be detected. Among the Presentation BI Beans
currently available are Graph, Table, and Crosstabs.

The Presentation Beans can be implemented as a thick client or a thin client.
Thick clients best support users who do immersed analyses, that is, use the
system for extensive periods of time with a lot of interaction. For example, users
who create reports benefit from a thick client. Thin clients best support remote
users who use a low bandwidth connection and have basic analytical needs.
Thin clients can be embedded in a portal or other Web site for these users.

= OLAP BI Beans acquire and manipulate the data. The OLAP BI Beans use the
OLAP API to connect to a data source, define a query, manipulate the resultant
data set, and return the results to the Presentation BI Beans for display.

You can use the Bl Beans in either thick-client or thin-client applications.

See Also: For more information about the BI Beans, go to the
Oracle Web site at ht t p: / / www. or acl e. com

Thick-Client Configuration

The components of an OLAP thick-client application are grouped into three tiers,
which can be on separate platforms or the same platform:

Developing OLAP Applications 3-7

Introducing the Bl Beans

= Javaclient tier. A Java application can run either in a browser or directly in the
Java Runtime Environment (JRE). The BI Beans that are dedicated to presenting
the data and metadata also run on this tier.

= Application server tier. The “brains” of the application run on this tier, which
includes the OLAP API and the OLAP BI Beans that are built using the OLAP
APIL

« Data server tier. The Oracle RDBMS and OLAP service form the data server tier,
where the data is stored, selected, and manipulated. An OLAP API component
also runs on the data server tier.

Figure 3-2 shows these relationships in a thick-client configuration.

Figure 3—-2 Thick Client Configuration

Java Client Tier

Applications

JRE * Browser
Presentation Beans

Application Server Tier I

Bl Beans

i

OLAP API

A

Data Server Tier

A

Oracle;@

OLAP API
Metadata Provider

Metadata

Oracle OLAP
Calculation

Engine
N-Pass Analytic
OLAP functions Workspace

>

3-8 Oracle9i OLAP User's Guide

Introducing the Bl Beans

Thin-Client Configuration

The components of an OLAP thin-client application are grouped into two tiers,
which can be on separate platforms or the same platform:

= Application server tier. The “brains” of the application run on this tier, which
includes a Web server, the OLAP API and the OLAP BI Beans (both

presentation and analytical).

« Data server tier. The Oracle RDBMS is the data server tier, where the data is
stored, selected, and manipulated either in relational tables or in the OLAP
analytic workspace. An OLAP API component also runs on the data server tier.

Figure 3-3 shows these relationships in a thin-client configuration.

Figure 3-3 Thin-Client Configuration

Application Server Tier

Application Server

Bl Beans

OLAP API

Data Server Tier

Metadata

N-Pass
OLAP functions

Oracle @

OLAP API

Metadata Provider

Oracle OLAP

Calculation
Engine

Analytic
Workspace

>

Developing OLAP Applications 3-9

Introducing the Bl Beans

Metadata

The OLAP API and the BI Beans use the OLAP Catalog to provide the information
they need about multidimensional objects defined in an Oracle data warehouse,
such as measures and dimensions. For information about metadata and other
requirements, refer to Chapter 4, "Designing Your Database for OLAP".

Runtime Repository

The BI Beans employ a runtime repository in the Oracle database that allows users
to save their personal analyses and to share their discoveries with other users.

Navigation

The Presentation BI Beans support navigation techniques such as drilling, pivoting,
and paging.

« Drilling displays lower-level values that contribute to a higher-level aggregate,
such as the cities that contribute to a state total.

= Pivoting rotates the data cube so that the dimension members that appeared
along the X-axis of a graph now appear along the Y-axis, or the dimension
members that labeled columns in a crosstab now label rows instead. For
example, if products label the rows and regions label the columns, then you can
pivot the data cube so that products label the columns and regions label the
rows.

« Paging handles additional dimensions by showing each member in a separate
graph, crosstab, or table rather than nesting them in the columns or rows. For
example, you might want to see each time period in a separate graph rather
than all time periods on the same graph.

Formatting

The Presentation BI Beans allow you to change the appearance of a particular
display. In addition, the values of the data itself can affect the format.

= Number formatting. Numerical displays can be modified by changing their
scale, number of decimal digits and leading zeros, currency symbol, negative
notation, and so forth. Currency symbols and scaling factors can be displayed in
the column or row headers rather than in the cells.

3-10 Oracle9i OLAP User’s Guide

Introducing the Bl Beans

Graphs

Crosstabs

Tables

« Stoplight formatting. The formatting of the cell background color, border, font,
and so forth can be data driven so that outstanding or problematic results stand
out visually from the other data values.

= Ranking. In ranking reports, the numerical rank of each dimension value, based
on the value of the measure, is displayed.

The Graph bean presents data in a large selection of two- and three-dimensional
business chart types, such as bar, area, line, pie, ring, scatter, bubble, pyramid, and
stock market. Many of the 2D graphs can be displayed as clustered, stacked, dual-Y,
percentage, horizontal, vertical, or 3D effect.

Bar, line, and area graphs can be combined so that individual rows in the data cube
can be specified as one of these graph types. You can also assign marker shape and
type, data line type, color, and width, and fill colors on a row-by-row basis.

The graph image can be copied to the system clipboard and exported in GIF and
other image formats.

Users can zoom in and out of selected areas of a graph. They can also scroll across
the axes.

The Crosstab bean presents data in a two-dimensional grid similar to a spreadsheet.
Multiple dimensions can be nested along the rows or columns, and additional
dimensions can appear as separate pages. Among the available customizations are:
Font style, size, color and underlining; individual cell background colors; border
formats; and text alignment.

Users can navigate through the data using either a mouse or the keyboard. They can
insert rows and columns to display totals, and edit cells for what-if analysis.

The Table bean presents data in record format like a relational table or view. In
contrast to the crosstab, the table display handles measures individually rather than
as members of a measure dimension. Thus, each measure can be manipulated
individually.

Developing OLAP Applications 3-11

Understanding the OLAP API

OLAP Bl Beans

Wizards

The OLAP BI Beans use the OLAP API to provide the basic services needed by an
application. They enable clients to identify a database, present credentials for
accessing that database, and make a connection. The application can then access the
metadata and identify the available data. Users can select the measures they want to
see and the specific slice of data that is of interest to them. That data can then be
modified and manipulated.

The BI Beans offer wizards that can be used both by application developers in
creating an initial environment and by end users in customizing applications to suit
their particular needs. The wizards lead you step-by-step so that you provide all of
the information needed by an application. The following are some of the tasks that
can be done using wizards.

= Building a query. Fact tables and materialized views often contain much more
data than users are interested in viewing. Fetching vast quantities of data can
also degrade performance unnecessarily. In addition to selecting measures, you
can limit the amount of data fetched in a query by selecting dimension
members from a list or using a set of conditions. A selection can be saved and
used again just by picking its name from a list.

The BI Beans take advantage of all of the new OLAP functions in the database,
including ranking, lag, lead, and windowing. End users can create powerful
queries that ask sophisticated analytical questions, without knowing SQL at all.

= Generating custom measures. You can define new “custom” measures whose
values are calculated from data stored within the database. For example, a user
might create a custom measure that shows the percent of change in sales from a
year ago. The data in the custom measure would be calculated using the lag
method on data in the Sales measure. Because a DBA cannot anticipate and
create all of the calculations required by all users, the BI Beans enable users to
create their own.

Understanding the OLAP API

OLAP applications typically have object-oriented user interfaces where users
manipulate objects that represent organized groupings of their data. Thus, there is a
natural relationship between an object-oriented user interface and an
object-oriented API such as the Oracle OLAP APIL. The OLAP API exploits this

3-12 Oracle9i OLAP User’s Guide

Understanding the OLAP API

natural relationship by providing objects that match the end-user behavior that an
application needs.

Object-oriented languages such as Java manipulate data by applying methods on
objects. This approach enables the objects to maintain a current state and support
incremental modifications to that state. This approach provides excellent support
for common OLAP actions such as drill and rotate.

For example, a central activity for users of OLAP applications is refining queries. A
user has a question in mind and devises a query to answer that question. In most
cases, the initial results of the query prompt the user to want to dig deeper for a
solution, perhaps by drilling to see more detailed data or by rotating the report to
highlight correlations in the data. The OLAP API is able to use the result of one
query as the input to the next query.

How the OLAP API Accesses Multidimensional Data

The OLAP API accesses the data through the OLAP Catalog, that is, the relational
tables that contain OLAP metadata. The application does not need to be aware of
whether the data is located in relational tables or in an analytic workspace, nor does
it need to know the mechanism for accessing that data.

Oracle OLAP translates all queries from the OLAP API into SQL; when a query is
issued through the OLAP API, the SQL generator in Oracle OLAP issues a SELECT
statement against a relational table or view. This has several advantages for
application developers:

« The difficult task of writing the complex SQL needed to resolve
multidimensional queries, and even more difficult task of optimizing that
complex SQL, is left for Oracle OLAP to do. Application developers can be
more productive writing in the OLAP API, which is designed for OLAP.

« Updates to SQL and the OLAP DML will be incorporated into new versions of
the OLAP API. Applications can make use of new analytic and performance
features without recoding.

Figure 3-4 shows how a query in the OLAP API that uses data from both a
multidimensional workspace object and a relational table is resolved.

Developing OLAP Applications 3-13

Understanding the OLAP API

Figure 3-4 Accessing Relational and Multidimensional Data Using the OLAP API

Java OLAP Applications

OLAP API

OLAP SQL Generator

OLAP Catalog

SaL

Relational Relational
Views Tables

SQL

Table Function

Object Type

SaL

OLAP Analytic

Calculation Workspace
Engine OLAP DML Oblects

As an alternative access method, the OLAP API provides a way for a Java
application to directly manipulate workspace data, without the need for any
metadata and without the use of the OLAP API data manipulation classes. The Java
application uses the SPLExecut or class in the OLAP API to send DML commands
directly to Oracle OLAP for execution in the workspace.

Whichever access method is used, the application establishes a connection, opens
the workspace, accesses the data (either through MDM metadata or through
SPLExecut or), closes the workspace, and closes the connection.

3-14 Oracle9i OLAP User's Guide

Understanding the OLAP API

See Also:
= Oracle9i OLAP Developer’s Guide to the OLAP API
« OLAP API Javadoc

Intelligent Caching

Analytical queries are by nature iterative. An analyst formulates a query, sees the
results, and then formulates other queries based on those results. Since the
likelihood is very high in business analysis of needing the same data to answer
subsequent queries, the OLAP API caches the metadata so that it is available
throughout the session without fetching it again. Moreover, the OLAP API defines
the result set of a query geometrically. Using multidimensional cursors, the OLAP
API can randomly access disparate regions of the result set. This allows an
application to retrieve just the data currently of interest instead of all of the data in
the result set. For example, you might scroll to the end of a page without having to
fetch all of the data on the page.

To acquire data from a data warehouse, the OLAP API generates SQL statements.
Data fetches use many of the newest innovations in Oracle9;, including
concatenated rollup, scrollable cursors, and query rewrite.

Calculation Capabilities

The OLAP API generates SQL commands to select and manipulate data stored in
the relational tables. These SQL commands can include the “N-pass” functions,
such as RANK, PERCENTI LE, TOPN, BOTTOWN, LAG LEAD, SUM AVG M N, MAX,
COUNT, and STDDEV.

The OLAP API provides expanded calculation capabilities beyond those that can be
handled efficiently in other OLAP solutions, such as:

« Totals broken out by multiple attributes

= Suppression of NA and zero rows, columns, and pages

= Row and column calculations

= Union dimensions

= Measures as dimensions

= Inter-row calculations such as the following book-to-bill ratio:

Bal ance(Account "BOOKED', Period "PRIOR')/ Bal ance(Account
"Bl LLED', Period "LAST")

Developing OLAP Applications 3-15

Understanding the OLAP API

= Asymmetric queries

The OLAP engine performs additional calculations, such as:
= Modeling

« FPorecasting

« What-if scenarios

These types of analysis can be performed on data in the analytic workspace.

See Also:
= Oracle9i OLAP Developer’s Guide to the OLAP API
= Oracle9i OLAP Developer’s Guide to the OLAP DML

Example 3-1 Selecting Values

This OLAP API code fragment demonstrates the selection of dimension values
based on the data values of a measure. The Sales measure has four dimensions. The
Geography, Channel, and Time dimensions are limited to one member each, then
Product members are selected with Sales values greater than 20,000,000.

Sour ce geographySel = geography. sel ect Val ue(" BOSTON') ;
Sour ce channel Sel = channel . sel ect Val ue(" TOTALCHANNEL") ;
Source timeSel = tine.selectValue("1996");
Source prodSel = product. sel ect (sal esSel. gt(20000000));
Source result = sal es.join(geographySel).

join(channel Sel).join(tinmeSel).join(prodSel);

3-16 Oracle9i OLAP User’s Guide

A

Designing Your Database for OLAP

This chapter highlights some of the most important data warehousing concepts as
they pertain to Oracle OLAP. It contains additional information that is specific to a
data warehouse that will support applications that use OLAP Catalog metadata,
such as the OLAP API and the BI Beans.

This chapter includes the following topics:

=« Overview

» Preparing a Database for the OLAP API

= Types of Data Stored in a Data Warehouse

= Data Structures in Relational and Multidimensional Data Stores

« OLAP Metadata Model

Designing Your Database for OLAP 4-1

Overview

Overview

This chapter provides concepts and background to help you start the process of
enabling your data warehouse for access by Oracle OLAP client applications. The
OLAP API has special requirements that are discussed in this chapter. If you are
developing a SQL application, you may still benefit from the discussion of OLAP
concepts. Moreover, SQL applications can also be implemented to use OLAP
Catalog metadata, like the OLAP APIL.

This chapter presumes that the relational data stores in your warehouse have
already been generated. For this purpose, you may have used Oracle Warehouse
Builder or some other Extraction Transformation Transport (ETT) tool. This chapter
does not provide sufficient information for you to build a relational data warehouse
of your own, or even to fully understand the issues involved in creating and
maintaining the relational structures for storing warehouse data.

See Also: Oracle9i Data Warehousing Guide for a detailed
discussion of data warehousing concepts as they apply to storage in
relational tables and data manipulation in SQL.

Preparing a Database for the OLAP API

Oracle provides specialized facilities for the development and deployment of
Java-based OLAP clients: the OLAP API and the BI Beans (Business Intelligence
Beans). The OLAP API directly queries the data warehouse. The BI Beans may be
used as a layer between the end user and the OLAP APIL

The OLAP API requires the presence of OLAP Catalog metadata in the database.
You will need to take these steps to prepare your data warehouse for the Oracle
OLAP API:

1. Design and implement the relational and/or multidimensional data stores to be
used by analytical applications.

2. Create the OLAP Catalog metadata.
3. Create the special materialized views that are used by the Oracle OLAP APIL

The information that you need to perform these steps is introduced in this chapter.

4-2 Oracle9i OLAP User's Guide

Types of Data Stored in a Data Warehouse

See Also:

= Chapter 5, "Creating OLAP Catalog Metadata" provides
detailed information about the tools and APIs you can use to
enable various warehouse configurations for OLAP access.

= The syntax of the PL/SQL APIs that create and display OLAP
Catalog metadata are documented in Part IV, "OLAP Catalog
Metadata API Reference".

Types of Data Stored in a Data Warehouse

The term data warehouse is used to distinguish a database that is used for business
analysis (OLAP) rather than transaction processing (OLTP). While an OLTP
database contains current low-level data and is typically optimized for the selection
and retrieval of records, a data warehouse typically contains aggregated historical
data and is optimized for particular types of analyses, depending upon the client
applications.

The contents of your data warehouse depends on the requirements of your users.
They should be able to tell you what type of data they want to view and at what
levels of aggregation they want to be able to view it.

Your data warehouse will store these types of data:
« Historical data

» Derived data

« Metadata

These types of data are discussed individually.

Historical Data

A data warehouse typically contains several years of historical data. The amount of
data that you decide to make available depends on available disk space and the
types of analysis that you want to support. This data can come from your
transactional database archives or other sources.

Some applications might perform analyses that require data at lower levels than
users typically view it. You will need to check with the application builder or the
application’s documentation for those types of data requirements.

Designing Your Database for OLAP 4-3

Data Structures in Relational and Multidimensional Data Stores

Derived Data

Derived data is generated from existing data using a mathematical operation or a
data transformation. It can be created as part of a database maintenance operation
or generated at run-time in response to a query.

Metadata

Metadata is data that describes the data and schema objects, and is used by
applications to fetch and compute the data correctly.

OLAP Catalog metadata is designed specifically for use with Oracle OLAP. It is
required by the Java-based Oracle OLAP API, and can also be used by SQL-based
applications to query the database.

Data Structures in Relational and Multidimensional Data Stores

Oracle offers both relational and multidimensional storage within a single database.
Historical and derived data can be stored either in relational tables or in
multidimensional objects.

Relational Table Storage

The lowest level of historical data, as well as fully aggregated historical data, can be
stored in fact tables in your data warehouse. The lowest level in a data warehouse
is typically at a much higher level than in the transactional database. The
transactional data should be aggregated to a base level where patterns and trends
can emerge and analysis is meaningful, before being stored in the data warehouse.
For example, individual purchase orders might be aggregated by sales
representative, zip code, or some other demographic feature.

Dimension tables, also called lookup tables, are used to store the dimension
members that determine the aggregation criteria for fact data. Dimension members
are typically organized in levels that roll up within hierarchies.

The Oracle RDBMS provides materialized views for storing precomputed data
derived from fact tables. Materialized views significantly improve querying times
because the aggregates are computed and stored as a database administration task
for everyone’s use, that is, when the data is refreshed rather than each time the
aggregates are needed.

4-4 Oracle9i OLAP User's Guide

Data Structures in Relational and Multidimensional Data Stores

Multidimensional Table Storage

As an alternative to relational table storage, data can be stored in multidimensional
objects in analytic workspaces. Analytic workspaces are multidimensional
structures that are designed specifically to support analytic processing. The
equivalent of a relational table in an analytic workspace is a variable. You can think
of variables as multidimensional tables. The historical and derived data in a data
warehouse can be distributed between relational tables and workspace variables.
Keep in mind that there is no need to duplicate data; it can be stored in tables or
variables, but it does not need to be stored in both.

You can use the sophisticated analysis tools of the OLAP DML to generate new data
such as forecasts. You have the option of copying this data into relational tables or
keeping it exclusively in the analytic workspace. Analytic workspaces are also an
alternative to materialized views for generating and storing aggregate data.

See Also: "Choosing a Schema for Your Data" on page 4-7 for a
discussion of the merits of these storage alternatives.

Temporary and Persistent Analytic Workspaces

Data can be loaded into analytic workspaces from SQL tables or from flat files. The
analytic workspaces can be either temporary or persistent, depending on your
needs. If an analytic workspace is needed only to perform a specific calculation and
the results of the calculation does not need to persist in the workspace, the
workspace can be discarded at the end of the session. This might occur if, for
example, an application needs to forecast a small amount of sales data. Since the
forecast can be rerun at any time, there might not be any point in saving the results.

Analytic workspaces can also persist across sessions. You might want to save data
in an analytic workspace if you have calculated a significant amount of data (for
example, a large forecast or the results of solving a model), or if you have
aggregated data using non-additive aggregation methods.

Data in analytic workspaces can be shared by many different users. To share data in
an analytic workspace, the workspace must be saved in the database during the
period of time it is to be shared.

See Also: Oracle9i OLAP Developer’s Guide to the OLAP DML for
detailed instructions on how to create and populate an analytic
workspace, and how to manipulate data stored in it.

Designing Your Database for OLAP 4-5

Data Structures in Relational and Multidimensional Data Stores

About Star, Snowflake, Parent-Child, and Multidimensional Schemas

A schema is a collection of database objects. The following types of schemas are
characteristic of a relational data warehouse:

« Star schema. Consists of one or more fact tables related to one or more
dimension tables. The relationships are defined through foreign keys, metadata,
or both.

= Snowflake schema. A star schema that has been partially or fully normalized to
reduce the number of duplicate values in the dimension tables. However,
snowflake schema require more joins, which can slow performance.

For example, a star schema might have a single geogr aphy dimension table with
four columns: ci ty, st at e, r egi on, and count ry. Only the ci t y column has
predominately unique values, while the other columns have increasing numbers of
duplicate values.

A snowflake schema might have three related geogr aphy dimension tables: One
table with two columns (Ci t y and st at e) that define the relationship between
cities and states, a second table with two columns (st at e and r egi on) that define
the relationship between states and regions, and a third table with two columns
(regi on and count r y) that define the relationship between regions and countries.

Star and snowflake schemas use level-based dimensions. Their hierarchies are
defined by the relationship between levels, and their levels map to columns in
dimension tables. Alternatively, a data warehouse schema may use parent-child
dimensions. In this type of schema, dimension members map to a parent column
and a child column. The parent-child combination in a given row expresses a
hierarchical relationship.

Your relational tables can be organized in either a level-based schema (star or
snowflake) or a parent-child schema.

With Oracle OLAP, your data warehouse storage options are extended to include:

= Multidimensional schema. You can think of analytic workspaces as
multidimensional schema, since a workspace stores a collection of related
objects.

With analytic workspace data, the data warehouse can support multidimensional
and hybrid solutions in addition to pure relational storage models. Thus, an Oracle
OLAP schema can contain multidimensional analytic workspace objects in addition
to fact tables and dimension tables.

4-6 Oracle9i OLAP User's Guide

Data Structures in Relational and Multidimensional Data Stores

Choosing a Schema for Your Data

The types of analyses performed by the OLAP applications that your data
warehouse will support determine the best choice of a data repository. You must
examine the benefits of each storage method in light of these applications and
decide which one most closely matches their requirements. You can choose to store
the data for your business analysis applications from these alternatives:

Entirely in a relational schema. During user sessions, SQL commands are used
to select and manipulate the data in the relational database.

Fact tables are the preferred data repository for most query and reporting
applications that require read-only access to the data. For these applications, the
relational database offers scalability in supporting very large data sets
efficiently and manageability with a single set of administrative tools.

Entirely in a multidimensional schema. As a routine maintenance task, data is
loaded into dimensions and variables in the analytic workspace from one or
more sources (including relational tables and flat files). During user sessions,
data is selected and manipulated in the analytic workspace.

Analytic workspaces should be used as a persistent data store for applications
that support predictive analysis functions, such as models, forecasts, and
what-if scenarios. Other design choices — such as the types of hierarchies, the
use of non-additive aggregation methods, or storage issues concerning
aggregate data — may make workspace objects the preferred data repository.

Distributed between a relational schema and a multidimensional schema.
The implementation of this model can, of course, vary widely since it
encompasses any scheme that draws on the other two methods. A distributed
solution may be desirable when an application requires the advanced
calculation capabilities of the analytic workspace combined with the efficient
storage of standard relational tables.

As explained in "How the OLAP API Accesses Multidimensional Data" on

page 3-13, the storage location of data is transparent to applications that use OLAP
metadata to identify data objects. Thus, database administrators can fine-tune the
database by moving data between relational tables and analytic workspaces
without breaking existing Java applications that use the OLAP APL

Designing Your Database for OLAP 4-7

OLAP Metadata Model

OLAP Metadata Model

The basic data model in a relational database is a table composed of one or more
columns of data. All of the data is stored in columns. In contrast, the basic data
model for multidimensional analysis is a cube, which is composed of Measures,
Dimensions, and Attributes.

Within the OLAP Catalog, you identify whether the data will function as a measure,
a dimension, or an attribute. Once these decisions are stored in the OLAP Catalog
metadata, the OLAP API can access warehouse data without regard to its
underlying storage format. Whether the data is stored in relational tables, analytic
workspaces, or some combination of relational and multidimensional schemas, the
OLAP Catalog presents the same logical model to applications that use the OLAP
APL

The OLAP Catalog metadata informs applications about the data that is available
within the database. The application can then define multidimensional objects to
represent that data. When the application runs, it instantiates these objects and
populates them with data.

Before you can create metadata, you must know what data users want to view and
at what levels they want to view it. If you have already created a data warehouse,
then you have already done most of this research. You only need to verify that the
requirements haven’t changed for the analytical applications that will be run using
Oracle OLAP.

Note: The OLAP API uses OLAP metadata. Even if you have
created other types of metadata to support other applications, you
must create OLAP metadata for applications written in the OLAP
APIL.

Keep in mind that the OLAP API only has access to objects in the
database through the metadata definitions. Thus, if an object (such

as a column in a table) has not been defined in the metadata, then it
is not available to the OLAP APIL

Mapping Data Objects to Metadata Objects

The objects comprising a data warehouse and Oracle OLAP metadata use different
data structures. The data objects in your data warehouse are represented to the
OLAP metadata catalog in the following relational objects, regardless of whether
the data is actually stored in relational tables or workspace variables:

4-8 Oracle9i OLAP User's Guide

OLAP Metadata Model

Measures

« Fact Tables or Views
« Level-based dimension Tables or Views

Oracle OLAP metadata catalog maps the data warehouse schema to these
multidimensional data objects:

« Measures

« Dimensions

« Dimension attributes
« Levels

« Level attributes

« Hierarchies

« Cubes

« Measure folders

Measures are the same as facts. The term “fact” is typically used in relational
databases, and the term “measure” is typically used in multidimensional
applications.

Measures are thus located in fact tables. A fact table has columns that store
measures (or facts) and foreign key columns that create the association with
dimension tables.

Measures contain the data that you wish to analyze, such as Sales or Cost. OLAP
Catalog metadata requires that a column have a numerical or a date data type to be
identified as a measure. Most frequently, a measure is numerical and additive.

Note: The OLAP API supports native Java data types. It does not
support the following Oracle data types: BLOB, CLOB, NCLOB,
RAW, and LONG RAW. Do not create measures from facts with
these unsupported data types.

The OLAP DML supports CLOB and NCLOB data types. Search for
“SQL (FETCH)” in the Oracle9i OLAP DML Reference help for
additional information about supported data types.

Designing Your Database for OLAP 4-9

OLAP Metadata Model

Dimensions

Dimensions identify and categorize your data. Dimension members are stored in a
dimension table. Each column represents a particular level in a hierarchy. In a star
schema, the columns are all in the same table; in a snowflake schema, the columns
are in separate tables for each level.

Because measures are typically multidimensional, a single value in a measure must
be qualified by a member of each dimension to be meaningful. For example, the
uni t _cost measure has two dimensions: pr oduct s_di mand ti mes_di m A
value of uni t _cost (21. 60) is only meaningful when it is qualified by a specific
product code (1575) and a time period (28-j an- 1998).

If you use Oracle Enterprise Manager to create OLAP metadata, then defining a
dimension in your data warehouse creates a database dimension object, in addition
to creating metadata. A dimension object contains the details of the parent-child
relationship between columns in a dimension table; it does not contain data.

Note: A dimension object is not created when you use the CV\WWR
PL/SQL procedures to create OLAP metadata.

The database dimension object is used by the Summary Advisor and query rewrite
to optimize your data warehouse.

Time Dimensions

OLAP metadata considers time dimensions to be distinct from other dimensions.
When you specify a dimension in the OLAP metadata, you must identify whether it
is a time dimension. A time dimension has special attributes that support both
regular and irregular time periods.

Regular time periods, such as weeks, months, and years, are evident on standard
calendars. Typically, they neither overlap nor have gaps between them.

Irregular time periods, such as promotional schedules and seasonal time periods,
are not evident on standard calendars. They often overlap (even to the extent that
one time period is a subset of another time period) or have gaps between them.

The time dimension table should contain the following columns to provide full time
support:

« Values for all dimension members, with a column for each level of
summarization (such as weeks, quarters, and years).

4-10 Oracle9i OLAP User's Guide

OLAP Metadata Model

An end-date attribute for each level, such as WEEK_ENDDATE, QUARTER _
ENDDATE, and YEAR_ENDDATE. These columns must have a DATE data type.
Their values identify the last day in the time period.

A time-span attribute for each level, such as WEEK_TI MESPAN, QUARTER _
TI MESPAN, and YEAR_TI MESPAN. These columns must have a NUMBER data
type. Their values identify the number of days in the period.

Note: The OLAP Management feature of Oracle Enterprise
Manager provides support for creating and populating time
dimension tables with these columns.

Designing Your Database for OLAP 4-11

OLAP Metadata Model

Example 4-1 Time Dimension in a Star Schema

The following table describes a dimension table in a star schema.

Column Name Sample Value Data Type Comment
VEEK | D W12000 VARCHAR2 Level 1
WEEK _DESC Week Ending January VARCHAR2 Attribute

8, 2000
VEEK _ENDDATE 8- JAN- 00 DATE Attribute
VEEK Tl MESPAN 7 NUMBER Attribute
QUARTER_I D 1QTR2000 VARCHAR2 Level 2
QUARTER _DESC 1st Quarter in Year VARCHAR2 Attribute
2000
QUARTER_ENDDATE 31- MAR- 00 DATE Attribute
QUARTER_TI MESPAN 91 NUMBER Attribute
YEAR I D YR2000 VARCHAR2 Level 3
YEAR_DESC Year 2000 VARCHAR2 Attribute
YEAR_ENDDATE 31- DEC- 00 DATE Attribute
YEAR_TI MESPAN 366 NUMBER Attribute

Example 4-2 Time Dimension in a Snowflake Schema

The following tables describe dimension tables in a snowflake schema. The first
table defines weeks, which is the lowest level of time data.

Column Name Sample Value Data Type Comment
WEEK | D WL2000 VARCHAR2 Level 1
WEEK _DESC Week Ending January VARCHAR2 Attribute

8, 2000
VEEK _ENDDATE 8- JAN- 00 DATE Attribute
VEEK Tl MESPAN 7 NUMBER Attribute

4-12 Oracle9i OLAP User's Guide

OLAP Metadata Model

A second table defines quarters.

Column Name Sample Value Data Type Comment
VEEK | D WL2000 VARCHAR2 Foreign key
QUARTER_I D 1QTR2000 VARCHAR2 Level 2
QUARTER_DESC 1st Quarter in Year VARCHAR2 Attribute

2000
QUARTER_ENDDATE 31- MAR- 00 DATE Attribute
QUARTER_TI MESPAN 91 NUMBER Attribute
A third table defines years.

Column Name Sample Value Data Type Comment
QUARTER_I D 1QTR2000 VARCHAR2 Foreign key
YEAR I D YR2000 VARCHAR2 Level 3
YEAR_DESC Year 2000 VARCHAR2 Attribute
YEAR_ENDDATE 31- DEC- 00 DATE Attribute
YEAR_TI MESPAN 366 NUMBER Attribute

Hierarchical Dimensions

A hierarchy is a way to organize data according to levels. Dimensions are
structured hierarchically so that data at different levels of aggregation can be
manipulated together efficiently for analysis and display. Dimension hierarchies
enable users to recognize trends at one level of aggregation, drill down to lower
levels to identify reasons for these trends, and roll up to higher levels to see what
affect these trends have on a larger sector of the business.

Each level represents a position in the hierarchy. Levels group the data for
aggregation and are used internally for computation. Each level above the base (or
lowest) level represents the aggregate total of the levels below it. For example, a

t i me dimension might have day, week, quart er, and year for the levels of a
hierarchy. If data for the sal es measure is stored in days, then the higher levels of
the t i me dimension allow the sal es data to be aggregated correctly into weeks,
quarters, and years. Days roll up into weeks, weeks into quarters, and quarters into

years.

Designing Your Database for OLAP 4-13

OLAP Metadata Model

Attributes

Cubes

The members of a hierarchy at different levels have a one-to-many parent-child
relationship. For example, qt r 1 and qt r 2 are the children of yr 2001, thus yr 2001
is the parentof qt r 1 and qt r 2.

Attributes provide descriptive information about the data and are typically used for
display.

Level Attributes

Level attributes provide supplementary information about the dimension members
at a particular level of a dimension hierarchy. The dimension members themselves
may be meaningless, such as a value of “1296” for a time period. These cryptic
values for dimension members are used internally for selecting and sorting quickly,
but are meaningless to users.

For example, you might have columns for employee number (ENUM), last name
(LAST_NAME), first name (FI RST_NAME), and telephone extension (TELNO). ENUMis
the best choice for a level column, since it is a key column and its values uniquely
identify the employees. ENUMalso has a NUMBER data type, which makes it more
efficient than a text column for the creation of indexes. LAST_NANE, FI RST_NAME,
and TELNOare attributes. Even though they are dimensioned by ENUM they do not
make suitable measures because they are descriptive text rather than business
measurements.

Dimension Attributes

Dimension attributes specify groupings of level attributes for a specific dimension.
Whereas level attributes map to specific data values, dimension attributes are
purely logical metadata objects.

An example of a dimension attribute is end dat e, which is required for time
dimensions. If a time dimension has month, quarter, and year levels, end dat e
identifies the last date of each month, each quarter, and each year. Within a
relational schema, the three level attributes that make up the end dat e dimension
attribute would be stored in columns with names like nont h_end_dat e,
guarter_end_dat e,and year _end_dat e.

Cubes are the metadata objects that associate measures with their dimensions. All
the measures associated with a cube have the exact same dimensionality.

4-14 Oracle9i OLAP User's Guide

OLAP Metadata Model

The edges of a cube are defined by its dimensions. Although there is no limit to the
number of edges on a cube, data is often organized for display purposes along three
edges, which are referred to as the row edge, column edge, and page edge. A single
dimension or multiple dimensions can be placed on an edge. For example, sales
data might be displayed with Product and Channel on the row edge, Time on the
column edge, and Customer on the page edge.

Measure Folders
Measures can be organized within measure folders, which facilitate the browsing of
data by business area. Measure folders are also known as catalogs.

Whereas dimensions and measures are associated with the schemas that contain
their source data, measure folders are schema independent. Each OLAP client can
view all measure folders defined within the Oracle instance.

Designing Your Database for OLAP 4-15

OLAP Metadata Model

4-16 Oracle9i OLAP User's Guide

5

Creating OLAP Catalog Metadata

This chapter describes the OLAP Catalog and the methods for working with OLAP
metadata.

This chapter includes the following sections:

See Also:

= "OLAP Metadata Model" on page 4-8 for detailed descriptions
of the logical entities in the OLAP Catalog.

« "Understanding the OLAP API" on page 3-12 for information
on the OLAP API and its use of the OLAP Catalog.

« PartIV, "OLAP Catalog Metadata API Reference" for detailed
descriptions of the APIs for creating CWW2 metadata.

Overview of the OLAP Catalog
Accessing the OLAP Catalog

Data Warehouse Requirements

Creating Metadata Using Oracle Enterprise Manager

Creating Metadata Using PL/SQL

Creating OLAP Catalog Metadata 5-1

Overview of the OLAP Catalog

Overview of the OLAP Catalog

The repository for OLAP metadata is known as the OLAP Catalog. OLAP metadata
represents warehouse data as logical cubes, as described in "OLAP Metadata
Model" on page 4-8.

OLAP metadata must be defined and mapped to any data that will be accessed by
the OLAP API. OLAP metadata may also be used by other types of analytical
applications.

OLAP metadata maps to dimension tables and fact tables. The dimension tables
must be organized in levels. The dimension tables and fact tables may be actual
relational tables or they may be views representing data stored in analytic
workspaces. A number of different warehouse configurations can be represented by
OLAP metadata, as described in "Data Warehouse Requirements" on page 5-4.

Tools for Creating OLAP Metadata

There are two tools for creating OLAP metadata:
= Oracle Enterprise Manager.

« The CWM2 PL/SQL APIs.

Note: Enterprise Manager currently uses a set of proprietary APIs
to create OLAP metadata. It does not provide access to metadata
created with the CWWR APIs.

However, the OLAP Catalog metadata views allow you to browse
all the metadata in the OLAP Catalog. This includes metadata
created by Enterprise Manager and metadata created by the CWWR
APIs.

OLAP Catalog Components
The OLAP Catalog includes the following:

« Metadata model tables - A set of tables that instantiate the OLAP metadata
model. These tables define all the OLAP metadata objects: dimensions,
measures, cubes, measure folders, and so on. Within the metadata definitions
are references to the actual warehouse data.

5-2 Oracle9i OLAP User's Guide

Accessing the OLAP Catalog

= A Write API - A set of PL/SQL packages for creating and editing OLAP
metadata. These packages contain procedures for inserting, updating, and
deleting rows in the model tables.

= ARead API - A set of SQL views providing information about the metadata
registered in the model tables.

Logical Steps for Creating OLAP Metadata

Whether you create OLAP metadata programmatically or by using Oracle
Enterprise Manager, you follow the same logical steps.

To create OLAP metadata:

1. Create the dimensions. Specify the levels, attributes, and hierarchies associated
with each one.

2. Create cubes and specify their edges (dimensions).

3. Create measures that represent the fact data. Associate each measure with a
cube.

4. Map the metadata entities to the source data.

5. Create measure folders in which to store related measures. Populate the folders
with measures.

Accessing the OLAP Catalog

To create OLAP metadata, you must be able to log into your database with
credentials that have been granted the OLAP_DBA role. The OLAP Catalog is owned
by the OLAPSYS user.

The OLAP_DBA role has system privileges associated with it, such as the ability to
create and drop tables, indexes, and dimensions. For a list of these privileges, follow
these steps:

1. Log into your database through Oracle Enterprise Manager.
2. Expand the Security branch.

3. Choose OLAP_DBA.

4. Display the Role and System Privileges pages.

If you have the system DBA role, then you also have the OLAP_DBA role. You must
also have the CONNECT role.

Creating OLAP Catalog Metadata 5-3

Data Warehouse Requirements

Note: To view existing metadata, you only need the CONNECT
and SELECT_CATALOG_ROLE roles.

Data Warehouse Requirements

The CWM2 APlIs support and extend Enterprise Manager’s warehouse requirements.

Basic Star or Snowflake Schema

Enterprise Manager creates OLAP metadata for star and snowflake schemas. It
creates a database dimension object for each logical OLAP dimension. The database
dimension object imposes the following restrictions on dimension tables and related
fact tables:

= All hierarchies must be level-based; the schema cannot use parent-child
dimension tables.

= Multiple hierarchies defined for a dimension must have the same base level.
= Level columns cannot contain NULLs.

» Fact data must be unsolved, that is, it is stored only at the lowest level of the
hierarchy, and all the data for a cube must be stored in a single fact table.

If your data warehouse complies with these requirements, you can use either
Enterprise Manager or the CWM2 APISs to create OLAP metadata.

Dimension Tables with Complex Hierarchies

If your dimension tables include any of the following variations, you must use the
CWWR APISs to create OLAP metadata:

« Level columns containing NULLS, such as in skip-level hierarchies
« Hierarchies with different lowest levels (sometimes called ragged hierarchies)

= Values mapped to different levels for multiple hierarchies

Solved and Unsolved Fact Data

Fact data is unsolved when it is stored at the lowest level of aggregation. Fact data
is solved when it is stored with embedded totals.

5-4 Oracle9i OLAP User's Guide

Data Warehouse Requirements

Enterprise Manager creates OLAP metadata for unsolved fact data. With the CWVR
APIs, you can create OLAP metadata for both solved and unsolved fact data.

The CWWR APIs also support multiple fact tables per cube. In this case, the data
associated with a given combinations of hierarchies can be stored in a separate fact
table. All the fact tables associated with a cube must have the same column
structure.

Multidimensional Data

With the CWMR APIs, you can create and populate analytic workspaces from a star
schema and generate relational views of the resulting workspaces. You can then
create OLAP metadata based on these views. Use the following procedure.

1. Use the CWW2_QOLAP_AW CREATE package, as described in Chapter 9 to create
the workspace and create relational views of the data. These views take the
place of fact tables and dimension tables.

2. Use other CWWR APIs to create OLAP metadata based on these views.

Note: If your data is stored in an analytic workspace that was
created in some other way, for example by using OLAP Worksheet
or the DBM5_AWpackage, you can use the CWWR_ OLAP_AW ACCESS
package to generate views of the workspace. Then use other CV\WWR
APIs to create OLAP metadata based on these views.

See Also: Chapter 3, "Developing OLAP Applications" and
Chapter 12, "OLAP_TABLE" for more detailed explanations of the
technology underlying views of analytic workspace data.

Parent-Child Dimensions

If the dimensions of your data are stored in parent-child dimension tables, then you
must convert them to level-based dimensions before creating OLAP metadata. Use
the following procedure:

1. Use the CWW2_QOLAP_PC_TRANSFORMpackage, as described in Chapter 25 to
convert the parent-child dimensions to a level-based dimensions.

2. Use other CWW2 APIs to create OLAP metadata based on the level-based
dimensions.

Creating OLAP Catalog Metadata 5-5

Creating Metadata Using Oracle Enterprise Manager

Creating Metadata Using Oracle Enterprise Manager

If your data warehouse complies with the requirements listed in "Basic Star or
Snowflake Schema" on page 5-4, you can create OLAP metadata using the OLAP
Management tool in Oracle Enterprise Manager.

You generate the SQL statements that create the metadata primarily by following
the steps presented by a wizard or by completing a property sheet. If you wish, you
can display the SQL statements before executing them.

Note: If you prefer to execute PL/SQL programs directly or your
schema does not conform to the requirements of the OLAP
Management tool, refer to "Creating Metadata Using PL/SQL" on
page 5-9.

Procedure: Accessing OLAP Management

Follow these steps to start Oracle Enterprise Manager and access OLAP
Management:

1.

Open the Oracle Enterprise Manager console.
You see the main page.
Expand Databases by clicking the plus sign next to it.

You see the list of service names for Oracle databases for which you have
defined a connection.

If the database that you want to manage is not listed, then from the Navigator
menu choose Add Database to Tree. You will need to supply the host name,
port number, and SID.

Expand the database that you want to manage.
You see the Database Connect Information dialog box.

Type in your user name (one with the appropriate credentials) and password
for that database.

5-6 Oracle9i OLAP User's Guide

Creating Metadata Using Oracle Enterprise Manager

Tip: Select the Save as preferred credentials box if you wish to
eliminate this step in future sessions. Your user name and
encrypted password will be saved in a local file. For security, make
sure that only you can run Oracle Enterprise Manager with your
stored credentials. Later, if you wish to change this information,
then choose Edit Local Preferred Credentials from the
Configuration menu.

The database folder will expand to show the various tools available for
administering the database.

Expand Warehouse.
Expand OLAP.

You see the types of objects that you can create. This part of Oracle Enterprise
Manager is for OLAP Management.

Defining Metadata for Dimension Tables

When creating OLAP metadata, you must first define the metadata objects for the
dimension tables. These metadata objects are logical dimensions based on database
dimension objects. You can use the Dimension Creation Wizard or supply
information directly in the Create Dimension dialog box.

To define a dimension, you provide all the information that will be needed to label
and aggregate the measures dimensioned by it, including;

The name of the dimension

The tables that contain the data for the dimension

The name of each level, and the columns that contain the data for each level
The number and order of levels in each hierarchy

Join keys for levels that are stored in separate tables

The columns that contain attributes for the levels

A display name and description for the dimension and each of its hierarchies,
levels, and attributes

Business analysis is performed on historical data, so fully defined time periods are
vital. Special support for time dimensions is built into the metadata to allow for
time-dependent analyses, such as comparisons with earlier time periods.

Creating OLAP Catalog Metadata 5-7

Creating Metadata Using Oracle Enterprise Manager

Your time dimension table must have columns for end-date and time-span, as
described in "Time Dimensions" on page 4-10. Typical levels and hierarchies for
time dimensions are suggested by the Dimension Wizard, but you do not have to
use them.

Follow these steps to create a dimension and its associated levels, hierarchies, and
attributes:

1. Start Oracle Enterprise Manager and access OLAP Management, as described in
"Procedure: Accessing OLAP Management" on page 5-6.

2. To create a new dimension, right click on Dimensions, then choose one of the
following:

= Create Using Wizard to run the Dimension Wizard
or
= Create to edit a new dimension property sheet

3. Choose Help if you need additional information.

Defining Metadata for Fact Tables

After you have defined the metadata objects for the dimension tables, you can
create metadata objects for the fact tables. These metadata objects are measures and
cubes. A cube is a collection of identically dimensioned measures. Cubes and
measures are defined entirely in the OLAP metadata; there are no corresponding
database objects. When you define a cube, you identify information such as the
following:

« The name of the cube and the fact table associated with it. All measures in a
cube must be from a single fact table.

« The names of the dimensions and the levels in the dimension hierarchies that
will be used in the cube.

« The names of the measures and the columns in the fact table where the values
for each measure is stored.

» Default aggregation operators for each dimension of each measure (such as sum
or average).

= Any calculation dependencies.

5-8 Oracle9i OLAP User's Guide

Creating Metadata Using PL/SQL

Follow these steps to create a cube:

1. Start Oracle Enterprise Manager and access OLAP Management, as described in
"Procedure: Accessing OLAP Management" on page 5-6.

2. Right-click on Cubes, then choose one of the following:
« Create Using Wizard to run the Cube Wizard
or
« Create to edit a new cube property sheet

3. Choose Help if you need additional information.

Viewing a Cube’s Data

The Cube Viewer allows you to see the cube that you created in the same way that
end-users might see it — with the data presented in a BI Beans crosstab, as
described in "Crosstabs" on page 3-11. Moreover, you can select the data that you
want to see by using the query builder.

Note: Only cubes created in Enterprise Manager are visible in the
Cube Viewer.

Procedure: Viewing a Cube’s Data

Follow these steps to view a cube:

1. Start Oracle Enterprise Manager and access OLAP Management, as described in
"Procedure: Accessing OLAP Management" on page 5-6.

2. Expand the OLAP tree so that you can see the list of cubes.
3. Right-click on the cube you want to examine, then choose Cube Viewer.

4. If you need additional information, then search for the Help topic “Viewing a
Cube’s Data.”

Creating Metadata Using PL/SQL

The CWM2 PL/SQL packages contain stored procedures that can create OLAP
metadata for a variety of data warehouses, as described in "Data Warehouse
Requirements" on page 5-4.

Creating OLAP Catalog Metadata 5-9

Creating Metadata Using PL/SQL

Before using these packages, make sure that you have performed any required
preprocessing steps, as described in "Multidimensional Data" and "Parent-Child
Dimensions" on page 5-5.

See Also: Part IV, "OLAP Catalog Metadata API Reference" for
the comprehensive syntax of the CWMR packages and examples of
their use.

Views of OLAP Catalog Metadata

A set of views, identified by the ALL_OLAP2 prefix, presents the metadata in the
OLAP Catalog. The metadata may have been created with the CWW2 PL/SQL
packages or with Enterprise Manager. These views are described in Chapter 14,
"Viewing OLAP Catalog Metadata".

CWM2 Packages for Creating OLAP Dimensions

The following packages contain procedures that create metadata for dimension
tables:

CWWVR_OLAP_DI MENSI ON contains procedures for creating dimensions.

CWWVR_OLAP_HI ERARCHY contains procedures for creating hierarchies for
dimensions.

CWWVR_OLAP_LEVEL contains procedures for creating levels for dimensions and
for associating levels with hierarchies.

CWWVR_OLAP_LEVEL_ATTRI BUTE contains procedures for creating level
attributes and associating them with levels.

CWWR_OLAP_DI MENSI ON_ATTRI BUTE contains procedures for creating
dimension attributes and associating them with dimensions.

CWM2 Packages for Creating Cubes

The following packages contain procedures that create metadata for fact tables:

CWWR_OLAP_CUBE contains procedures for creating the multidimensional
structure of cubes.

CWWVR_OLAP_MEASURE contains procedures for creating measures and
associating them with cubes.

5-10 Oracle9i OLAP User’s Guide

Creating Metadata Using PL/SQL

CWM2 Package for Mapping Metadata

The CWW2_COLAP_TABLE_MAP package contains procedures that map logical
metadata entities to their physical data source. The data may be stored in relational
tables, or it may be represented by relational views. When the dimension tables and
fact tables are defined as views, the actual data may reside in analytic workspaces.

CWM2 Package for Creating Analytic Workspaces

The CWWR_OLAP_AW CREATE package contains procedures for replicating a star
schema within an analytic workspace and creating relational views of the
workspace.

The CWWR_OLAP_AW ACCESS package contains generic procedures for creating
relational views of analytic workspaces. These workspaces do not have to be
created by CWWR_OLAP_AW CREATE.

CWM2 Package for Creating Level-Based Dimension Tables

The CWWR_OLAP_PC_TRANSFORMpackage contains a procedure for transforming
parent-child dimension tables to level-based dimension tables. This conversion is
necessary if the dimension will be accessed by the OLAP APIL

CWM2 Packages for Classification and Validation

The following packages contain procedures for creating measure folders and
validating OLAP metadata:

« OWM CLASSI FY
« OWR_OLAP_VALI DATE

Creating OLAP Catalog Metadata 5-11

Creating Metadata Using PL/SQL

5-12 Oracle9i OLAP User’s Guide

Part ||

Oracle OLAP Administration

Part II provides information for database administrators on administrative tasks
associated with Oracle OLAP.

This part contains the following chapters:

= Chapter 6, "Administering Oracle OLAP"

= Chapter 7, "OLAP Dynamic Performance Views"

= Chapter 8, "OLAP_API_SESSION_INIT"

= Chapter 9, "Creating an Analytic Workspace From Relational Tables"

6

Administering Oracle OLAP

This chapter describes the various administrative tasks that are associated with
Oracle OLAP. It contains the following topics:

Administration Overview

Initialization Parameters for Oracle OLAP
Initialization Parameters for the OLAP API
Creating Tablespaces for Analytic Workspaces
Setting Up User Names

Controlling Access to External Files
Understanding Data Storage

Monitoring Performance

Administering Oracle OLAP 6-1

Administration Overview

Administration Overview

Because Oracle OLAP is contained in the database and is managed using the same
tools, the management tasks of Oracle OLAP and the database converge.
Nonetheless, a database administrator or applications developer needs to address
management tasks in the specific context of Oracle OLAP. Following is a list of these
tasks.

» Database configuration. Permanent and temporary tablespaces must be created
to prevent I/O bottlenecks, as described in "Creating Tablespaces for Analytic
Workspaces". Initialization parameters must also be set to optimize
performance.

= Security. Users of OLAP applications must have database identities that have
been granted the appropriate access rights. For users to have access to files,
aliases for the directories must be created and the access rights must be granted.
Refer to "Setting Up User Names" on page 6-9.

« Data maintenance. For data that will be stored in analytic workspaces, stored
procedures must be developed in the OLAP DML for copying the data into
multidimensional data objects and performing whatever aggregations or other
data manipulations are required. Refer to the Oracle9i OLAP Developer’s Guide to
the OLAP DML.

These tasks are typically performed during off-peak hours using a batch facility,
as described in "Monitoring Performance" on page 6-13.

« Data Interfaces. For access by SQL, views of multidimensional objects can be
created using table functions, as described in Chapter 3, "Developing OLAP
Applications". For access by the OLAP API, OLAP metadata must be defined.
Refer to Chapter 5, "Creating OLAP Catalog Metadata".

« Performance. Materialized views must be created for data stored in relational
schema. All of the data, whether it is stored in relational tables or
multidimensional tables, may require striping and partitioning to gain the best
performance. For information about how analytic workspaces are stored in the
database, refer to "Understanding Data Storage" on page 6-11. For information
about striping and partitioning for relational tables, refer to the Oracle9i Data
Warehousing Guide.

6-2 Oracle9i OLAP User's Guide

Initialization Parameters for Oracle OLAP

Initialization Parameters for Oracle OLAP

Several packages described in this guide require that ut | _fi | e_di r be set. This
parameter enables the RDBMS to write to a file.

Table 6-1 identifies the parameters that affect the performance of Oracle OLAP.
Alter your server parameter file or i ni t . or a file to these values, then restart your
database instance.

Table 6-1 Database Performance Initialization Parameter Settings

Parameter Setting

db_cache_si ze Half of physical memory

paral | el _max_servers The number of processors minus one

This parameter limits the number of processes that are
used for a parallel update. The number of parallel
processes is also dependent on the number of analytic
workspace extension files that are being updated.

sessi ons 2.5 * maximum number of OLAP users

See Also: Oracle9i SQL Reference for information about these
parameters.

Take the following steps to set system parameters:

1.

Open thei ni t si d. or a parameters file in a text editor.

The parameters file is located in $ORACLE_HOME/ admi n/ si d/ pfi | e, where
sid is the system identifier as defined in $ORACLE
HOVE/ net wor k/ admi n/ t nsnanes. or a.

Add or change the settings in the file.

For example, you might enter a command like this so that Oracle can write files
to the Or aHore1/ ol ap directory:

UTL_FI LE DI R=/ user s/ oracl e/ OraHonmel/ ol ap

Stop and restart the database, using commands such as the following. Be sure to
identify the parameters file in the STARTUP command.

sqlplus '/ as sysdba’
shut down i nmedi at e
startup pfil e=/users/oracl e/ O atonel/adnin/rel 9dw pfile/initrel 9dw ora

Administering Oracle OLAP 6-3

Initialization Parameters for the OLAP API

OLAP_PAGE_POOL_SIZE

OLAP_PAGE_PQOOL_SI ZE is an initialization parameter that is specific to Oracle
OLAP. This parameter specifies in bytes the maximum size of the paging cache to be
allocated to an OLAP session.

The OLAP paging cache is allocated at the start of an OLAP session and released
when the user exits the database. An OLAP session can be initiated by the OLAP_
TABLE function, the DBM5_AWPL/SQL package, or via command line in OLAP
Worksheet.

The minimum value of OLAP_PAGE_PQOOL_SI ZE is 2 MB. The default value is 32
MB.

The OLAP paging cache is allocated from the User Global Area (UGA). When the
database is running in dedicated mode, the UGA is part of the Process Global Area
(PGA). When the database is running in multi-threaded server mode (MTS), the
UGA is part of the Shared Global Area (SGA).

When the database is running in dedicated mode, you can reset the value of OLAP_
PAGE_PQOCL_SI ZE in an ALTER SESSION statement. If you decrease the value, you
should first do an UPDATE in the analytic workspace and a COMMIT in the
database. If you increase the value to a size greater than the available memory,
OLAP_PAGE POOL_SI ZE remains the same.

If OLAP_PAGE_PQOCOL_SI ZE is greater than available memory, OLAP session
initialization will fail.

For performance reasons, it is generally preferable to use a small OLAP paging
cache and a larger DB_CACHE_SI ZE. An OLAP paging cache of 4 MB is fairly
typical, with 2 MB used for systems with limited memory resources.

Initialization Parameters for the OLAP API

The OLAP API will perform best if the configuration parameters for the database
are optimized for this type of use. During installation of the Oracle RDBMS, an
OLAP configuration table is created and populated with ALTER SESSI| ON
commands that have been tested to optimize the performance of the OLAP API.
Each time the OLAP API opens a session, it executes these ALTER SESSI ON
commands.

If a database instance is being used only to support Java applications that use the
OLAP API], then you can modify your server parameter file or i ni t . or a file to
include these settings. Alternatively, you might want to include some of the settings

6-4 Oracle9i OLAP User's Guide

Creating Tablespaces for Analytic Workspaces

in the server parameter file and leave others in the table, depending upon how your
database instance is going to be used. These are your choices:

Keep all of the parameters in the configuration table, so that they are set as part
of the initialization of an OLAP API session. This method fully isolates these
configuration settings solely for the OLAP API. (Default)

Add some of the configuration parameters to the server parameter file or

i ni t. orafile, and delete those rows from the configuration table. This is
useful if your database is being used by other applications that require the same
settings.

Add all of the configuration parameters to the server parameter file or init.ora
file, and delete all rows from the configuration table. This is the most
convenient if your database instance is being used only by the OLAP APL

Regardless of where these parameters are set, you should check the Oracle
Technology Network for updated recommendations.

See Also:
= Chapter 8, "OLAP_API_SESSION_INIT" for information about
the read and write APIs

= Oracle9i SQL Reference for descriptions of initialization
parameters that can be set by the ALTER SESSI ON command

Creating Tablespaces for Analytic Workspaces

Before users begin creating analytic workspaces, you should create tablespaces that
will be used for temporary and permanent storage of analytic workspaces. By
default, these tablespaces are created in the SYS tablespace, which can degrade
overall performance. Oracle OLAP makes heavy use of temporary tablespaces, so it
is particularly important that they be set up correctly to prevent I/O bottlenecks.

These are some of the objects that Oracle OLAP stores in temporary tablespaces:

The results of what-if analysis or other changes to the analytic workspace before
they are committed to the database

Output logs
Views in a self-join

Output of a table function when it exceeds 64KB

Administering Oracle OLAP 6-5

Creating Tablespaces for Analytic Workspaces

If possible, you should stripe the datafiles and temporary files across as many
controllers and drives as are available.

Example 6-1 provides an example of a session in SQL*PLUS in which these
tablespaces are created.

Example 6-1 Creating Tablespaces

The SQL commands in this example do the following:
= Create a tablespace named OLAPUNDOIin a disk file named ol apundo. f.

= Create and modify a rollback segment named OLAPSEGin the OLAPUNDO
tablespace.

= Create a temporary tablespace named OLAPTEMP that uses up to four
temporary disk files named t enpl. f ,t enp2. f ,t enp3. f , and t enp4. f. The
additional disk files are located on separate physical disks (user 2, user 3, and
user4).

= Grant the SCOTT user access rights to use OLAPTEMP.

= Create a tablespace named OLAPTS in up to three disk files named ol apdf 1. f,
ol apdf 2. f,and ol apdf 3. f.

Following this example is an explanation of the statements beginning with
"Creating a Tablespace for Rollbacks" on page 6-7.

SQL> CREATE TABLESPACE ol apundo DATAFILE ' /user 1/ oracl e/ dat afi | es/ ol apundo. f’
2 SIZE 200M REUSE AUTCEXTEND ON EXTENT MANAGEMENT LOCAL UNI FORM

Tabl espace creat ed.
SQL> CREATE RCOLLBACK SEGMVENT ol apseg TABLESPACE ol apundo STORAGE (OPTI MAL 6M;
Rol | back segment created.
SQL> ALTER ROLLBACK SEGMENT ol apseg ONLI NE;
Rol I back segnent altered.
SQL> CREATE TEMPORARY TABLESPACE ol apt enp TEMPFI LE
2 'luser2/oraclel/datafiles/tenpl.f’ SIZE 1024M REUSE
3 AUTOEXTEND ON NEXT 100M MAXSI ZE 2048M EXTENT MANAGEMENT LOCAL;

SQL> ALTER TABLESPACE ol aptenp ADD TEMPFI LE
2 'luser2/oracle/datafiles/tenp2.f’ SIZE 1024M REUSE

6-6 Oracle9i OLAP User's Guide

Creating Tablespaces for Analytic Workspaces

AUTCEXTEND ON NEXT 100M MAXSI ZE 4096,

3 'Juser3/oracle/datafiles/tenp3.f’ SIZE 1024M REUSE
AUTCEXTEND ON NEXT 100M MAXSI ZE 4096,

4 '|userd4/oraclel/datafiles/tenpd.f’ SIZE 1024M REUSE
AUTCEXTEND ON NEXT 100M MAXSI ZE UNLI M TED;

Tabl espace al tered.
SQL> ALTER USER scott TEMPORARY TABLESPACE ol apt enp;
User altered.

SQL> CREATE TABLESPACE ol apts DATAFI LE

2 'Juserl/oraclel/olapdfl.f' SIZE 500M REUSE AUTOEXTEND ON NEXT 100M
MAXSI ZE 4096M

3 'luser2/oraclel/olapdf2. f' SIZE 500M REUSE AUTOEXTEND ON NEXT 100M
MAXSI ZE 4096M

4 'Juser3/oracl e/ ol apdf3.f’ SIZE 500M REUSE AUTOEXTEND ON NEXT 100M
MAXSI ZE UNLI M TED;

Tabl espace creat ed.

Creating a Tablespace for Rollbacks

The following SQL commands create a tablespace that Oracle OLAP uses to store
changes to active analytic workspaces so that the changes can be rolled back if
necessary.

CREATE TABLESPACE t abl espacenanme DATAFILE ' pat hname' Sl ZE size REUSE
AUTCEXTEND ON EXTENT MANAGEMENT LOCAL UNI FORM

CREATE RCOLLBACK SEGVENT segment nanme TABLESPACE t abl espacenane
STORAGE (COPTI MAL si ze);

Where:

segnent name is the name of the segment.

pat hnane is the fully qualified file name.

si ze is an appropriate size for these tablespaces.

t abl espacenane is the name of the tablespace being defined.

Administering Oracle OLAP 6-7

Creating Tablespaces for Analytic Workspaces

Creating a Temporary Tablespace

Oracle OLAP uses temporary tablespace to maintain different generations of an
analytic workspace. This allows it to present a consistent view of the analytic
workspace when one or more users are reading it while the contents are being
updated.

CREATE TEMPORARY TABLESPACE t abl espacenane TEMPFILE ' pat hnanel’

Sl ZE size REUSE AUTCEXTEND ON NEXT size MAXSI ZE size EXTENT MANAGEMENT LOCAL;
ALTER TABLESPACE t abl espacenane ADD TEMPFI LE

"pat hname2’ Sl ZE si ze REUSE AUTOEXTEND ON NEXT size MAXSIZE si ze,

"pat hname3' Sl ZE size REUSE AUTOEXTEND ON NEXT size MAXSIZE si ze,

' pat hname4' Sl ZE size REUSE AUTOEXTEND ON NEXT size MAXSI ZE si ze;

ALTER USER user name TEMPORARY TABLESPACE t abl espacenane;

Where:
segment nane is the name of the segment.

pat hnanel... pathname4 are the fully qualified file names of files that located
on separate disk drives if possible.

Si ze is an appropriate size for these tablespaces.
t abl espacenane is the name of the tablespace being defined.
user nane is a user or group that you want to grant access rights to this tablespace.

wor kspacenane is the name of a new analytic workspace.

Creating Tablespaces for Analytic Workspaces

When a user creates an analytic workspace, it is created by default in the SYS
tablespace. The following commands create a tablespace that a user or group of
users can specify as the storage location for their analytic workspaces. Using this
temporary tablespace instead of the SYS tablespace will result in better
performance. Note that this tablespace can be located on a separate disk drive.

CREATE TABLESPACE t abl espacenanme DATAFI LE
' pathnamel' SIZE size REUSE AUTCEXTEND ON NEXT si ze MAXSIZE si ze,
' pathname2' S| ZE si ze REUSE AUTCEXTEND ON NEXT si ze MAXSI ZE si ze,
' pathname3' S| ZE size REUSE AUTCEXTEND ON NEXT size MAXSI ZE UNLI M TED,

Where:

segment nane is the name of the segment.

6-8 Oracle9i OLAP User's Guide

Setting Up User Names

pat hnanel... pathname3 are the fully qualified names of files located on
separate disk drives if possible.

Si ze is an appropriate size for these tablespaces.

t abl espacenare is the name of the tablespace.

user nane is a user or group that you want to grant access rights to this tablespace.
wor kspacenane is the name of a new analytic workspace.

After creating this tablespace, be sure to instruct the users with access rights to
create their analytic workspaces with OLAP DML commands such as the following
one. Otherwise, their analytic workspaces will still be created in the SYS tablespace,
even though you have created a separate tablespace for this purpose.

AW CREATE wor kspacenanme TABLESPACE t abl espacename

Querying the Size of an Analytic Workspace

To find out the size of the tablespace extensions for a particular analytic workspace,
use the following SQL statements:

COLUWN DBMS_LOB. GETLENGTH(AWL.OB) HEADI NG "Byt es";
SELECT EXTNUM DBMS_LOB. GETLENGTH(AWLOB) FROM AWbwor kspacenane;

Where:

wor kspacenarre is the name of the analytic workspace.

Setting Up User Names

To connect to the database, a user must present a user name and password that can
be authenticated by database security. The privileges associated with that user name
control the user’s access to data. As a database administrator, you must set up user
names with appropriate credentials for all users of Oracle OLAP applications.

To connect to the database using the OLAP API, users must have the following
access rights to the database:

= CONNECT role
= QUERY REVRI TE system privilege
= SELECT privileges on the database objects containing the data to be analyzed

You can define user names and grant them these rights from the Security folder of
Oracle Enterprise Manager.

Administering Oracle OLAP 6-9

Controlling Access to External Files

Controlling Access to External Files

The OLAP DML contains three types of commands that read from and write to
external files:

» File read commands that copy data between flat files and workspace objects.

= Import and export commands that copy workspace objects and their contents to
files for transfer to another database instance.

= File input and output commands that read and execute DML commands from a
file and redirect command output to a file.

These commands control access to files by using BFILE security. This database
security mechanism creates a directory alias to represent a physical disk directory.
Permissions are assigned to the alias, which control access to files within the
associated physical directory.

You use PL/SQL statements to create a directory alias and grant permissions. The
relevant syntax of these SQL statements is provided in this chapter.

See Also: Oracle9i SQL Reference under the entries for CREATE
DI RECTORY and GRANT for the full syntax and usage notes.

Creating a Directory Alias

To create a directory alias, you must have CREATE ANY DI RECTORY system
privileges.

Use a CREATE DI RECTORY statement to create a new directory alias, or a REPLACE
DI RECTORY statement to redefine an existing directory alias, using the following
PL/SQL syntax:

{ CREATE | REPLACE | CREATE OR REPLACE} DI RECTORY alias AS 'pathnane’;

Where:
alias is the name of the directory alias.

pathname is the physical directory path.

Granting Access Rights to a Directory Alias

After you create a directory alias, grant users and groups access rights to the files
contained in that directory, using the following PL/SQL syntax:

GRANT permission ON DI RECTCRY alias TO {user | role | PUBLIC};

6-10 Oracle9i OLAP User's Guide

Understanding Data Storage

Where:
per m ssi on is one of the following;:

READ for read-only access
VRI TE for write-only access
ALL for read and write access

al i as is the name of the directory alias.
user is a database user name. That user gets immediate access rights.

rol e is a database role. All users who have been granted that role get immediate
access rights.

PUBLI Cis all database users. All users gets immediate access rights.

Example: Creating and Using a Directory Alias

The following SQL commands create a directory alias named ol apdeno to control
access to a directory named / user s/ or acl e/ Or aHone1/ deno and grant read
access to all users.

CREATE DI RECTCRY ol apdeno as '/users/oracl e/ OraHonel/ deno’ ;
CGRANT READ ON DI RECTORY ol apdenmo TO PUBLI C;

Users access files located in / user s/ or acl e/ Or aHone1/ deno with DML
commands such as this one:

funit = FI LEOPEN(' ol apdeno/ units. dat' READ)

Understanding Data Storage

Oracle OLAP multidimensional data is stored in analytic workspaces. An analytic
workspace can contain a variety of objects, such as dimensions, variables (also
called measures), and OLAP DML programs. These objects typically support a
particular application or set of data.

Whenever an analytic workspace is created, modified, or accessed, the information
is stored in tables in the relational database.

Administering Oracle OLAP 6-11

Understanding Data Storage

Important: These tables are vital for the operation of Oracle OLAP.
Do not delete them or attempt to modify them directly unless you
are fully aware of the consequences.

User-Owned Tables

An analytic workspace is stored in a table in the Oracle database as a Binary Large
Object (BLOB).

For example, if the SCOTT user creates two analytic workspaces, one named
SALESDATA and the other named SALESPRGS, then these tables will be created in
the SCOTT schema:

AWSSALESDATA
AW SALESPRGS

These tables store all of the object definitions and data for these analytic
workspaces.

See Also: Oracle9i OLAP Developer’s Guide to the OLAP DML for
information about managing analytic workspaces.

System Tables

The SYS user owns several tables associated with analytic workspaces:

AWBEXPRESS
ANS
PS$

AWBEXPRESS stores the expr ess analytic workspace. This workspace contains
objects and programs that support the OLAP DML. The expr ess workspace is
used any time that a session is open.

AWS maintains a record of all analytic workspaces in the database, recording its
name, owner, and other information.

PS$ maintains a history of all page spaces. A page is an ordered series of bytes
equivalent to a file. Oracle OLAP manages a cache of workspace pages. Pages are
read from storage in a table and written into the cache in response to a query. The
same page can be accessed by several sessions.

6-12 Oracle9i OLAP User's Guide

Monitoring Performance

One writer and many readers can use an analytic workspace at one time. The
information stored in PS$ enables the Oracle OLAP to discard pages that are no
longer in use, and to maintain a consistent view of the data for all users, even when
the workspace is being modified during their sessions. When changes to a
workspace are saved, unused pages are purged and the corresponding rows are
deleted from PS$.

Monitoring Performance

Each Oracle database instance maintains a set of virtual tables that record current
database activity. These tables are called dynamic performance tables. The dynamic
performance tables collect data on internal disk structures and memory structures.
Among them are tables that collect data on Oracle OLAP. By monitoring these
tables, you can detect usage trends and diagnose system bottlenecks.

OLAP dynamic performance tables and associated views are described in
Chapter 7, "OLAP Dynamic Performance Views".

Administering Oracle OLAP 6-13

Monitoring Performance

6-14 Oracle9i OLAP User's Guide

v

OLAP Dynamic Performance Views

Oracle collects performance statistics in fixed tables, and creates user-accessible
views from these tables. This chapter describes the views that contain performance
data on Oracle OLAP.

See Also: For additional information about dynamic performance
tables and views, refer to the following:

» Oracle9i Database Reference

« Oracle9i Database Performance Guide and Reference

This chapter contains the following topics:

= System Tables Referenced by OLAP Performance Views
= Summary of OLAP Performance Views

= V$AW_CALC

= V$AW_OLAP

= V$AW_SESSION_INFO

OLAP Dynamic Performance Views 7-1

System Tables Referenced by OLAP Performance Views

System Tables Referenced by OLAP Performance Views

Each Oracle database instance maintains a set of virtual tables that record current
database activity. These tables are called dynamic performance tables.

The dynamic performance tables collect data on internal disk structures and
memory structures. Dynamic performance tables are continuously updated while
the database is in use. Among them are tables that collect data on Oracle OLAP.

The names of the OLAP dynamic performance tables begin with V$AWThe SYS
user owns the dynamic performance tables. In addition, any user with the SELECT
CATALOGrole can access the tables.

The system creates views from these tables and creates public synonyms for the
views. The views are sometimes called fixed views because they cannot be altered
or removed by the database administrator. The synonym names also begin with
V$AWThe views are also owned by SYS, but the DBA can grant access to them to a
wider range of users.

The following sample SQL*Plus session shows the list of OLAP system tables.
% sqlplus '/ as sysdba’

SQL> SELECT nanme FROM v$fixed_t abl e WHERE nane LI KE ' VSAWA ;

VSAW CLAP
V$AW CALC
VSAW SESSI ON_| NFO

Summary of OLAP Performance Views
Table 7-1 briefly describes each OLAP performance view.

Table 7-1 OLAP Performance Views

Fixed View Description

V$AW_CALC Collects information about the use of cache space.

V$AW_OLAP Collects information about the status of active analytic
workspaces.

V$AW_SESSION_INFO Collects information about each active session.

7-2 Oracle9i OLAP User's Guide

V$AW_CALC

VSAW_CALC

V$AW CAL Creports on the effectiveness of various caches used by Oracle OLAP.
Because OLAP queries tend to be iterative, the same data is typically queried
repeatedly during a session. The caches provide much faster access to data that has
already been calculated during a session than would be possible if the data had to
be recalculated for each query.

The more effective the caches are, the better the response time experienced by users.
An ineffective cache (that is, one with few hits and many misses) probably indicates
that the data is not being stored optimally for the way it is being viewed. To
improve runtime performance, you may need to reorder the dimensions of the
variables (that is, change the order of fastest to slowest varying dimensions).

Oracle OLAP uses the following caches:

= Aggregate cache. An optional cache used by the AGGREGATE function in the
OLAP DML. The AGGREGATE function calculates aggregate data at runtime in
response to a query. When a cache is maintained, AGGREGATE can retrieve data
that was previously calculated during the session instead of recalculating it
each time the data is queried.

= Session cache. Oracle OLAP maintains a cache for each session for storing the
results of calculations. When the session ends, the contents of the cache are
discarded.

= Page pool. A cache allocated from the program global area (PGA) in the
database, which Oracle OLAP maintains for the session. The page pool is
associated with a particular session and is shared by all attached analytic
workspaces. If the page pool becomes too full, then Oracle OLAP writes some
of the pages to the database cache. When an UPDATE command is issued in the
OLAP DML, the changed pages associated with that analytic workspace are
written to the permanent LOB, using temporary segments as the staging area
for streaming the data to disk.

= Database cache. The larger cache maintained by the Oracle RDBMS for the
database instance.
See Also:

« Oracle9i OLAP Developer’s Guide to the OLAP DML for full
discussions of data storage issues and aggregation.

= Oracle9i OLAP DML Reference help under the CACHE
command for information about defining an aggregate cache.

OLAP Dynamic Performance Views 7-3

V$AW_CALC

Column Datatype

Description

AGGREGATE_CACHE_HI TS NUMBER

AGGREGATE_CACHE_M SSES NUMBER

SESSI ON_CACHE_HI TS NUVBER

SESSI ON_CACHE_M SSES ~ NUMBER

POOL_HI TS NUVBER
POOL_M SSES NUVBER
POOL_NEW PAGES NUVBER

POOL_RECLAI MED_PAGES NUMBER

CACHE_W\RI TES NUMBER

POOL_SI ZE NUMBER

The number of times a dimension member is found in the
aggregate cache (a hit).

The number of hits for run-time aggregation can be increased by
fetching data across the dense dimension.

The number of times a dimension member is not found in the
aggregate cache and must be read from disk (a miss).

The number of times the data is found in the session cache (a
hit).

The number of times the data is not found in the session cache (a
miss).

The number of times the data is found in a page in the OLAP
page pool (a hit).

The number of times the data is not found in the OLAP page
pool (a miss).

The number of newly created pages in the OLAP page pool that
have not yet been written to the workspace LOB.

The number of previously unused pages that have been recycled
with new data.

The number of times the data from the OLAP page pool has
been written to the database cache.

The number of pages in the OLAP page pool.

7-4 Oracle9i OLAP User's Guide

V$AW_OLAP

VSAW_OLAP

V$AW OLAP provides a record of active sessions and their use with analytic
workspaces. A row is generated whenever an analytic workspace is created or
attached. The first row for a session is created when the first DML command is
issued. It identifies the SYS. EXPRESS workspace, which is attached automatically
to each session. Rows related to a particular analytic workspace are deleted when
the workspace is detached from the session or the session ends.

Column Datatype Description

SESSI ON_I D NUMBER A unique numerical identifier for a session.

AW NUMBER NUMBER A unique numerical identifier for an analytic workspace.

ATTACH_MODE VARCHAR2(10) READ ONLY or READ WRI TE.

GENERATI ON NUMBER The generation of an analytic workspace. Each UPDATE creates a
new generation. Sessions attaching the same workspace between
UPDATE commands share the same generation.

TEMP_SPACE_PAGES NUMBER The number of pages stored in temporary segments for the
analytic workspace.

TEMP_SPACE_READS NUMBER The number of times data has been read from a temporary
segment and not from the page pool.

LOB_READS NUMBER The number of times data has been read from the table where
the analytic workspace is stored (the permanent LOB).

POOL_CHANGED PAGES NUMBER The number of pages in the page pool that have been modified

POOL_UNCHANGED_PAGES NUMBER

in this analytic workspace.

The number of pages in the page pool that have not been
modified in this analytic workspace.

OLAP Dynamic Performance Views 7-5

V$AW_SESSION_INFO

VSAW_SESSION_INFO

VSAW SESSI ON_I NFOprovides information about each active session.

A transaction is a single exchange between a client session and Oracle OLAP.
Multiple DML commands can execute within a single transaction, such as in a call
to the DBMS_AW EXECUTE procedure.

Column Datatype Description

CLI ENT_TYPE VARCHAR2(64) OLAP

SESSI ON_STATE VARCHAR2(64) TRANSACTI NG, NOT_TRANSACTI NG, EXCEPTI ON_
HANDLI NG, CONSTRUCTI NG, CONSTRUCTED,
DECONSTRUCTI NG, or DECONSTRUCTED

SESSI ON_HANDLE NUMBER The session identifier

USERI D VARCHAR2(64) The database user name under which the session
opened

CURR_DM._ COMVAND VARCHAR2(64) The DML command currently being executed

PREV_DML._COVIVAND VARCHAR2(64) The DML command most recently completed.

TOTAL_TRANSACTI ON NUMBER The total number of transactions executed within the
session; this number provides a general indication of
the level of activity in the session

TOTAL_TRANSACTI ON_TI ME NUVBER The total elapsed time in milliseconds in which
transactions were being executed

AVERAGE_TRANSACTI ON_TI ME NUMBER The average elapsed time in milliseconds to
complete a transaction

TRANSACTI ON_CPU_TI ME NUVBER The total CPU time in milliseconds used to complete
the most recent transaction

TOTAL_TRANSACTI ON_CPU_TI ME NUMBER The total CPU time used to execute all transactions
in this session; this total does not include
transactions that are currently in progress

AVERAGE_TRANSACTI ON_CPU_TI ME NUMBER The average CPU time to complete a transaction;

this average does not include transactions that are
currently in progress

7-6 Oracle9i OLAP User's Guide

38

OLAP_API_SESSION_INIT

The OLAP_API _SESSI ON_I NI T package contains procedures for maintaining a
configuration table of initialization parameters for the OLAP APL

This chapter contains the following topics:

Overview

Summary of OLAP_API_SESSION_INIT Subprograms
ADD_ALTER_SESSION Procedure
DELETE_ALTER_SESSION Procedure
CLEAN_ALTER_SESSION Procedure
ALL_OLAP_ALTER_SESSION View

OLAP_API_SESSION_INIT 8-1

Overview

Overview

The OLAP_API _SESSI ON_I NI T package contains procedures for maintaining a
configuration table of initialization parameters. When the OLAP API opens a
session, it executes the ALTER SESSI ON commands listed in the table for any user
who has the specified roles. Only the OLAP API uses this table; no other type of
application executes the commands stored in it.

This functionality provides an alternative to setting these parameters in the
database initialization file or the i ni t . or a file, which would alter the environment
for all users.

During installation, the table is populated with ALTER SESSI ON commands that
have been shown to enhance the performance of the OLAP API. Unless new
settings prove to be more beneficial, you do not need to make changes to the table.

The information in the table can be queried through the ALL_OLAP_ALTER
SESSI ONview alias, which is also described in this chapter.

Summary of OLAP_API_SESSION_INIT Subprograms

Table 8-1 OLAP_API_SESSION_INIT Subprograms

Subprogram Description

ADD_ALTER_SESSION Specifies an ALTER SESSI| ON parameter for OLAP
Procedure on page 8-3 API users with a particular database role.
DELETE_ALTER_SESSION Removes a previously defined ALTER SESSI ON
Procedure on page 8-5 parameter for OLAP API users with a particular

database role.

CLEAN_ALTER_SESSION Removes orphaned data, that is, any ALTER
Procedure on page 8-6 SESSI ON parameters for roles that are no longer
defined in the database.

8-2 Oracle9i OLAP User's Guide

ADD_ALTER_SESSION Procedure

ADD ALTER _SESSION Procedure

Syntax

Parameters

Exceptions

Examples

This procedure specifies an ALTER SESSI ON parameter for OLAP API users with a
particular database role. It adds a row to the OLAP$SALTER SESSI ON table.

ADD ALTER SESSI ON (
rol e_name I'N VARCHAR?,
session_parameter IN VARCHAR?) ;

The r ol e_nane and sessi on_par anet er are added as a row in OLAP$ALTER _
SESSI ON.

Table 8—2 ADD_ALTER_SESSION Procedure Parameters

Parameter Description

rol e_nane The name of a valid role in the database. Required.

sessi on_par anet er A parameter that can be set with a SQL ALTER SESSI ON
command. Required.

Table 8-3 ADD_ALTER_SESSION Procedure Exceptions

Exception Description
invalid_ role Role is not defined in the database.
duplicate_role Session parameter has already been set for that role.

The following call inserts a row in OLAP$ALTER SESSI ON that turns on query
rewrite for users with the OLAP_DBA role.

call ol ap_api _session_init.add _al ter_session(
" CLAP_DBA', ' SET QUERY_REWRI TE_ENABLED=TRUE');

OLAP_API_SESSION_INIT 8-3

ADD_ALTER_SESSION Procedure

The ALL_OLAP_ALTER_SESSI ON view now contains the following row:

ROLE CLAUSE_TEXT
OLAP_DBA ALTER SESSI ON SET QUERY_REWRI TE_ENABLED=TRUE

8-4 Oracle9i OLAP User's Guide

DELETE_ALTER_SESSION Procedure

DELETE_ALTER_SESSION Procedure

Syntax

Parameters

Exceptions

Examples

This procedure removes a previously defined ALTER SESSI ON parameter for
OLAP API users with a particular database role. It deletes a row from the
OLAP$ALTER _SESSI ON table.

DELETE_ALTER SESSI ON (
rol e_name I'N VARCHAR?,
session_parameter IN VARCHAR?) ;

The r ol e_namne and sessi on_par anet er together uniquely identify a row in
OLAPSALTER_SESSI ON.

Table 8—4 DELETE_ALTER_SESSION Procedure Parameters

Parameter Description

rol e_nane The name of a valid role in the database. Required.

sessi on_par anet er A parameter that can be set with a SQL ALTER SESSI ON
command. Required.

Table 8-5 DELETE_ALTER_SESSION Procedure Exceptions

Exception Description
invalid_ role Role is not defined in the database.
duplicate_role Session parameter has already been set for that role.

The following call deletes a row in OLAP$ALTER_SESSI ON that contains a value of
OLAP_DBA in the first column and QUERY_REWRI TE_ENABLED=TRUE in the
second column.

call ol ap_api _session_init.delete_alter_session(
" CLAP_DBA', ' SET QUERY_REWRI TE_ENABLED=TRUE');

OLAP_API_SESSION_INIT 8-5

CLEAN_ALTER_SESSION Procedure

CLEAN_ALTER_SESSION Procedure

This procedure removes all ALTER SESSI ON parameters for any role that is not
currently defined in the database. It removes all orphaned rows in the
OLAPSALTER_SESSI ON table for those roles.

Syntax
CLEAN_ALTER SESSI ON ();

Examples

The following call deletes all orphaned rows.

call ol ap_api _session_init.clean_alter_session();

8-6 Oracle9i OLAP User's Guide

ALL_OLAP_ALTER_SESSION View

ALL_OLAP_ALTER_SESSION View

ALL_OLAP_ALTER SESSI ONis the public synonym for V$OLAP_ALTER
SESSI ON, which is a view for the OLAPSALTER SESSI ONtable. The view and table
are owned by the SYS user.

Each row of ALL_OLAP_ALTER_SESSI ONidentifies a role and a session
initialization parameter. When a user opens a session using the OLAP AP]I, the
session is initialized using the parameters for roles granted to that user. For
example, if there are rows for the OLAP_DBA role and the SELECT_CATALOG _ROLE,
and a user has the OLAP_DBA role, then the parameters for the OLAP_DBA role will
be set, but those for the SELECT_CATALOG_ROLE will be ignored.

Table 86 ALL_OLAP_ALTER_SESSION Column Descriptions

Column Datatype NULL Description
ROLE VARCHAR2(30) NOT NULL A database role
CLAUSE_TEXT VARCHAR2(3000) An ALTER SESSI ONcommand

OLAP_API_SESSION_INIT 8-7

ALL_OLAP_ALTER_SESSION View

8-8 Oracle9i OLAP User's Guide

Creating an Analytic Workspace From
Relational Tables

You can use the AW CREATE PL/SQL package to replicate a star schema within an
analytic workspace and generate relational views of the resulting workspace cube.
You can query these views directly using standard SQL. You can also create OLAP
Catalog metadata that maps to these views to enable access by the OLAP APIL

See Also: Chapter 16, "CWM2_OLAP_AW_CREATE" for the
syntax of the AW CREATE procedure calls.

This chapter contains the following topics:

» Choosing to Use an Analytic Workspace

« Functional Summary

» Procedure: Create the OLAP Catalog Metadata

« Procedure: Create the Analytic Workspace Cube

« Procedure: Create SQL Access to the Analytic Workspace

» Column Structure of Dimension Views

« Column Structure of Fact Views

Creating an Analytic Workspace From Relational Tables 9-1

Choosing to Use an Analytic Workspace

Choosing to Use an Analytic Workspace

If you determine that OLAP processing would best support the needs of an
application, you can use the CWWR2_OLAP_AW CREATE package to replicate your
relational data warehouse within an analytic workspace.

Relational and Multidimensional Data Models

The basic data model in a relational database is a table composed of one or more
columns of data. In contrast, the basic data model in an analytic workspace is a
cube, in which the data is stored as one or more measures with the same
dimensionality. See Chapter 4, "Designing Your Database for OLAP" for an
explanation of both data models.

Advantages of OLAP

OLAP processing within an analytic workspace is optimized to support complex
analytic queries. Moreover, an analytic workspace can provide an efficient means of
managing summary data, which may be precalculated or calculated on the fly. See
"Why OLAP?" on page 1-2 for more information.

Functional Summary
With the CWWR2_OLAP_AW CREATE package, you can accomplish the following basic
tasks:

= Create an analytic workspace, and define containers within it to represent an
OLAP Catalog cube. The cube must be mapped to a star schema.

= Create load definitions. These definitions specify which data to load from the
relational tables and how to aggregate it within the analytic workspace.

= Use aload definition to load data from the relational tables and aggregate it
within the analytic workspace.

= Build relational views of the resulting analytic workspace. The views use the
OLAP_TABLE function, described in Chapter 12, to access the workspace via
object technology.

Note: Currently, the source cube in the OLAP Catalog must be
mapped to a star or snowflake schema, as described in "Data
Warehouse Requirements" on page 5-4.

9-2 Oracle9i OLAP User's Guide

Procedure: Create the Analytic Workspace Cube

Procedure: Create the OLAP Catalog Metadata

Before you can use the CWWR_OLAP_AW CREATE procedures, you must create a
cube in the OLAP Catalog. You can use Enterprise Manager, as described in
"Creating Metadata Using Oracle Enterprise Manager" on page 5-6, or you can write
scripts that use the CWM2 PL/SQL packages, as described in Chapter 13, "Using the
OLAP Catalog Metadata APIs".

Note: If you choose to write your own script using the CVWWVR
packages, be sure to create the cube for a star schema with a single
fact table containing only lowest level data.

Each of the cube’s hierarchies must have a solved code set to
UNSOLVED LEVEL, and the join relationships between the fact table
and dimension tables must be mapped with storage type indicator
of LONEST LEVEL.

For more information on setting the solved code for a hierarchy, see
Chapter 20. For more information on setting the storage type
indicator, see "Mapping OLAP Metadata" on page 13-4.

Procedure: Create the Analytic Workspace Cube

Once the appropriate metadata exists in the OLAP Catalog, you can create the cube
within the analytic workspace. Within a script, invoke the AW CREATE procedures
as follows:

1.

For each of the cube’s dimensions, call the AW_DIMENSION_CREATE
Procedure to define the data structures for the dimension within the analytic
workspace. The first call to AW DI MENSI ON_CREATE creates the analytic
workspace if it does not already exist.

Create one or more load definitions for each dimension. Call the
AW_DIM_DEFINE_LOAD Procedure to name the load definition and specify
its type. You can also call the AW_DIM_FILTER_LOAD Procedure to specify a
SQL WHERE clause for the query against the dimension tables.

Call the AW_CUBE_CREATE Procedure to define the data structures for the
cube within the analytic workspace.

Create one or more load definitions for the cube. Call the
AW_CUBE_DEFINE_LOAD Procedure to name a load definition. Call the
following procedures to complete the load definition:

Creating an Analytic Workspace From Relational Tables 9-3

Procedure: Create SQL Access to the Analytic Workspace

« Toload data that meets a certain criteria, call the
AW_CUBE_FILTER_LOAD Procedure to specify a SQL WHERE clause for
the query against the fact table.

« To specify which of the cube’s measures to load, call the
AW_CUBE_MEASURE_LOAD Procedure.

= If you want to partially aggregate the cube’s data within the analytic
workspace, call the AW_CHOOSE_LEVEL_TUPLES Procedure to create a
table of level combinations for the cube. By default, all level combinations
are selected for aggregation. For partial aggregation, edit the table to
deselect the appropriate levels. Then call the AW_DEFINE_AGG_PLAN
Procedure to define the aggregation plan for the cube.

Note: If you do not specify partial aggregation, the cube will be
fully aggregated within the analytic workspace.

5. Call the AW_DIMENSION_REFRESH Procedure with a given load definition to
load each analytic workspace dimension.

6. Call the AW_CUBE_REFRESH Procedure with a given load definition to load
the analytic workspace cube.

Procedure: Create SQL Access to the Analytic Workspace

Once you have completed the steps described in Procedure: Create the Analytic
Workspace Cube, you can generate the relational views that will allow SQL
applications to access the analytic workspace. These views contain calls to the
OLAP_TABLE function. OLAP_TABLE, described in Chapter 12, uses object
technology to present the contents of the workspace in table format.

Use the following steps to generate the views:

1. Call the AW_DIMENSION_CREATE_ACCESS Procedure to generate views of
the cube’s dimensions.

2. Call the AW_CUBE_CREATE_ACCESS Procedure to generate views of the
cube’s measures.

Note: In the current release, the views generated by AW
DI MENSI ON_CREATE_ACCESS and AW CUBE CREATE_ACCESS
are structured in the format required by the OLAP APL

9-4 Oracle9i OLAP User's Guide

Column Structure of Dimension Views

Column Structure of Dimension Views

The AW DI MENSI ON_CREATE_ACCESS procedure generates a separate view for
each dimension hierarchy. For example, an AW cube with the four dimensions
shown in Table 9-1, would have six separate dimension views since two of the
dimensions have two hierarchies.

Table 9-1 Sample Dimension Hierarchies

Dimensions Hierarchies Number of Views
geogr aphy st andard 2
consol i dat ed
pr oduct st andard 1
channel standard 1
tine st andard 2
ytd

The dimension views are level-based, and they include the full lineage of every
level value in every row. This type of dimension table is considered solved, because
the fact table related to this dimension includes embedded totals for all level
combinations.

Each dimension view contains the columns described in Table 9-2.

Table 9—-2 Dimension View Columns

Column Description

ET key The embedded-total key column stores the value of the lowest
populated level in the row.

Parent ET key The parent embedded-total key column stores parent of the ET key

column.

GID The grouping ID column identifies the hierarchy level associated
with each row, as described in "Grouping ID Column" on
page 9-6.

Parent GID The parent grouping ID column stores the parent of the grouping ID
column.

level columns There is a column for each level of the dimension hierarchy.

level attribute There is a column for each level attribute.

columns

Creating an Analytic Workspace From Relational Tables 9-5

Column Structure of Fact Views

Sample Dimension View

For a standard geography hierarchy with levels for TOTAL_US, REG ON, and
STATE, the dimension view would contain columns like the ones shown below.
Level attribute columns would also be included.

G D PARENT_G D ET KEY PARENT_ET_KEY TOTAL_US REG ON STATE
0 1 MA Nor t heast USA Nor t heast MA

0 1 NY Nor t heast USA Nor t heast NY

0 1 GA Sout heast USA Sout heast GA

0 1 CA Sout hwest USA Sout hwest CA

0 1 AZ Sout hwest USA Sout hwest AZ

1 3 Nort heast USA USA Nor t heast

1 3 Sout heast USA USA Sout heast

1 3 Sout hwest USA USA Sout hwest

3 NA USA NA USA

Grouping ID Column

The GID identifies the hierarchy level associated with each row by assigning a zero
to each non-null value and a one to each null value in the level columns. The
resulting binary number is the value of the GID.

For example, a GID of 1 is assigned to a row with the following three levels.

TOTAL_US REG ON STATE
USA Sout hwest
0 0 1

A GID of 3 is assigned to a row with the following five levels.

TOTAL_GECG COUNTRY REG ON STATE CTY

Worl d USA Nor t heast
0 0 0 1 1

Column Structure of Fact Views

The AW CUBE_CREATE_ACCESS procedure generates a separate view for each
dimension/hierarchy combination. For example, an analytic workspace cube with
the four dimensions shown in Table 9-1, would have four separate fact views, one
for each hierarchy combination show in Table 9-3.

9-6 Oracle9i OLAP User's Guide

Column Structure of Fact Views

Table 9-3 Sample Dimension/Hierarchy Combinations

Geography Dim Product Dim Channel Dim Time Dim

geogr aphy/ product/standard channel/standard tine/standard
st andard

geogr aphy/ product/standard channel/standard tinme/ytd

st andar d

geogr aphy/ product/standard channel/standard tine/standard

consol i dat ed

geogr aphy/ product/standard channel/standard tinme/ytd
consol i dat ed

The fact views are fully solved. They contain embedded totals for all level
combinations. Each view has columns for the cube’s measures, and key columns
that link the fact view with its associated dimension views.

Each fact view contains the columns described in Table 9-4.

Table 9-4 Fact View Columns

Column Description

ET key for each The ET key column maps to the ET key column of the associated
dimension/hierarchy = dimension table.

GID for each The GID column maps to GID column of the associated dimension
dimension/hierarchy table.

measure columns Columns for each of the cube’s measures.

empty columns 100 empty numeric columns and 100 empty text columns. These

columns may be used to store custom measures.

Creating an Analytic Workspace From Relational Tables 9-7

Column Structure of Fact Views

9-8 Oracle9i OLAP User's Guide

10

Creating Materialized Views for the
OLAP API

This chapter provides information to help you create materialized views specific to
the requirements of the OLAP API. It describes the kinds of materialized views you
will need to create, and it presents an overview of the tools that can assist you in
creating them.

See Also:
= Chapter 29, "Creating Dimension Materialized Views"

= Chapter 30, "Creating Fact Materialized Views With DBMS_
ODM"

= Chapter 31, "Creating Fact Materialized Views With OLAP
Summary Advisor"
This chapter includes the following topics:
« Choosing a Summary Management Strategy
« Materialized View Formats
« Materialized Views and OLAP Metadata
« Dimension Materialized Views
= Fact Materialized Views

= Choosing the Right Format for Materialized Views

Creating Materialized Views for the OLAP API 10-1

Choosing a Summary Management Strategy

Choosing a Summary Management Strategy

A basic feature of online analytical processing (OLAP) is the ability to analyze and
view various levels of aggregate data. With Oracle OLAP, you can choose to
manage aggregation within analytic workspaces or you can use Oracle’s query
rewrite facility.

Summary Management with Analytic Workspaces

Multidimensional processing within analytic workspaces provides an efficient
means of managing summary data. Summaries may be precalculated or calculated
on the fly. See "The Oracle9i Integrated Relational-Multidimensional Database" on
page 1-4 for more information about multidimensional processing.

You can move your warehouse data from relational tables to analytic workspaces
using the AW CREATE package. See Chapter 9, "Creating an Analytic Workspace
From Relational Tables".

Summary Management with Materialized Views

Summary management for relational warehouses is managed by Oracle’s query
rewrite facility. Query rewrite enables a query to fetch aggregate data from
materialized views rather than recomputing the aggregates at runtime.

When the OLAP API queries a warehouse stored in relational tables, it uses query
rewrite whenever possible. To prepare your relational warehouse for access by the
OLAP API, you need to establish materialized views according to the guidelines
described in this chapter.

About Materialized Views

Materialized views store data that has been calculated from detail tables. When data
in the detail tables changes, you can refresh materialized views with the new data.
While a view only stores the query, a materialized view actually stores the results
of a query. Thus, you will need to allocate sufficient tablespace to store the required
materialized views.

The OLAP API requires a very specific set of materialized views. For query rewrite
to recognize that a materialized view contains the query results, the materialized
view must have been created using basically the same type of SQL commands that
are generated by the OLAP APL

You should create materialized views for frequently-aggregated data that is stored
at detail level in a star or snowflake schema.

10-2 Oracle9i OLAP User’s Guide

Materialized View Formats

Do not create materialized views for data stored in embedded-total tables or
analytic workspaces. Relational tables with embedded totals contain all the
summary information within the tables. Analytic workspaces provide summary
management based on a native multidimensional model.

Materialized View Formats

The database provides you with several tools for generating materialized views for
the OLAP API. These tools produce materialized views for dimensions and fact
tables. Fact materialized views may be built with concatenated rollup syntax or
with grouping set syntax.

The choices you make in establishing materialized views will be based primarily on
the structure of the data in the star schema and on the query requirements of OLAP
clients.

Important: You must be sure to create materialized views that are
specifically for use by the OLAP APL Query rewrite will not map
the SQL generated by the OLAP API to the materialized views
generated by the DBMS_QOLAP PL/SQL package, which is described
in the Oracle9i Data Warehousing Guide. Do not use the DBMS_CLAP
package for the OLAP APL

Grouping Sets

The OLAP API supports fact table materialized views that use explicit grouping set
syntax. This type of materialized view uses the GROUP BY GROUPI NG SETS syntax
to aggregate the data for each level combination in the summary.

Materialized views generated with grouping set syntax can support asymmetric
partial summarization. A single materialized view of this type holds all the
summary information for a cube.

To generate this type of materialized view, use the Oracle Data Management
PL/SQL package, DBMS_CDM

Concatenated Rollup

The OLAP API also supports fact table materialized views that use concatenated
rollup syntax. This type of materialized view uses the GROUP BY ROLLUP syntax to
aggregate the data for each level combination in the summary.

Creating Materialized Views for the OLAP APl 10-3

Materialized Views and OLAP Metadata

Materialized views generated with concatenated rollup syntax can support
symmetric partial summarization. A single materialized view of this type holds the
summary information for one hierarchy combination of a cube.

To generate this type of materialized view, use the OLAP Summary Advisor within
Oracle Enterprise Manager.

Materialized Views and OLAP Metadata

You should create materialized views after you have defined the OLAP metadata
for your star schema.

See Also: Chapter 5, "Creating OLAP Catalog Metadata" for
information about creating OLAP metadata.

If your OLAP metadata is visible within Enterprise Manager, you can use the OLAP
Summary Advisor to create MVs in concatenated rollup form. You can also use the
DBM5_ODMpackage to create MVs in grouping set form.

If your OLAP metadata is not visible within Enterprise Manager, you must use the
DBM5_ODMpackage. Only grouping set style MVs are supported for this type of
metadata.

Dimension Materialized Views

When creating materialized views for the OLAP API, you should create MVs for
each dimension in a star schema. Dimensions may be denormalized in a single table
or normalized in separate tables (snow flake schema).

The structural differences between concatenated rollup style and grouping set style
apply only to materialized views for fact tables. The structure of dimension
materialized views is the same whether the fact table materialized view uses
concatenated rollup or grouping sets.

Creating Dimension Materialized Views

When you use OLAP Summary Advisor, dimension materialized views are
automatically created along with the fact materialized views for a cube.

Alternatively, you can use the CREATEDI MW_GS procedure in the DBM5_ODM
package to create dimension materialized views.

10-4 Oracle9i OLAP User’s Guide

Fact Materialized Views

Note: The syntax of the CREATE MATERI ALI ZED VI EW
statement is the same whether generated by OLAP Summary
Advisor or the DBM5_ODMpackage.

Number of Dimension Materialized Views

The dimension MV scripts produced by OLAP Summary Advisor and DBMS_CDM
create a separate MV for each hierarchy of a dimension.

Table 10-1, " SALES_CUBE Cube" lists the dimensions and hierarchies associated
with the SALES_CUBE cube in the Sales History (SH) schema.

Table 10-1 SALES_CUBE Cube

SALES_CUBE Dimensions Hierarchies Number of MVs

SH. CHANNELS DI M CHANNEL_ROLLUP 1

SH. CUSTOVERS DI M CUST_ROLLUP 2
GEOG_ROLLUP

SH. PRODUCTS_DI M PROD_ROLLUP 1

SH. PROMOTI ONS_DI M PROMO_ROLLUP 1

SH. TI MES_DI M CAL_ROLLUP 2
FI' S _ROLLUP

The total number of dimension materialized views required for SALES_CUBE is
seven, the sum of the number of materialized views required for each of its
dimension hierarchies.

See Also: Chapter 29, "Creating Dimension Materialized Views"
for more information about creating materialized views for
dimensions.

Fact Materialized Views

When creating MVs for the OLAP API, you should create materialized views for
each OLAP Catalog cube that represents a star schema. The cube must be mapped
to a single fact table, and the fact table may contain only lowest-level data. For more
information, see "Materialized Views and OLAP Metadata" on page 10-4.

Creating Materialized Views for the OLAP APl 10-5

Choosing the Right Format for Materialized Views

Number of Fact Materialized Views

The number of fact materialized views for a cube depends on whether you using
concatenated rollup style MVs or grouping set MVs.

If you use OLAP Summary Advisor, you will generate a separate concatenated
rollup style MV for each combination of hierarchies in the cube. If you use DBV5_
ODM you will generate a single grouping set style MV for the cube.

For example, the SALES_CUBE cube in the Sales History (SH) schema, described in
Table 10-1, would have either one materialized view generated with grouping sets
or four materialized views generated with concatenated rollup.

For SALES_CUBE, there would be a separate concatenated rollup materialized view
for the each of the following dimension hierarchy combinations.

. (CHANNEL, PRODUCT, PROVOTI ONS, CUSTOVERS_CUST_ROLLUP, TI MES_CAL _
ROLLUP)

. (CHANNEL, PRODUCT, PROVOTI ONS, CUSTOVERS_CUST_ROLLUP, TI MES_FI'S_
ROLLUP)

. (CHANNEL, PRODUCT, PROVOTI ONS, CUSTOVERS_GEOG ROLLUP, TI MES_CAL _
ROLLUP)

« (CHANNEL, PRODUCT, PROMOTI ONS, CUSTOVERS GEOG ROLLUPR, TI MES FI S
ROLLUP)
See Also:

« Chapter 30, "Creating Fact Materialized Views With DBMS_
ODM"

« Chapter 31, "Creating Fact Materialized Views With OLAP
Summary Advisor".

Choosing the Right Format for Materialized Views

Whether you choose to use grouping set or concatenated rollup for your fact
materialized views will depend on the complexity of the data in your star schema
and on the nature of your OLAP metadata.

For more information on the metadata requirements, see "Materialized Views and
OLAP Metadata" on page 10-4.

10-6 Oracle9i OLAP User’s Guide

Choosing the Right Format for Materialized Views

Unless you have a very simple data model with only single-hierarchy dimensions,
grouping set MVs are generally more efficient and provide greater flexibility than
concatenated rollup MVs.

Query Performance

Build Times

MVs generated with grouping sets provide better runtime query performance for
schemas that have dimensions with multiple hierarchies. MVs generated with
concatenated rollup are more efficient for schemas that have only single-hierarchy
dimensions.

If you have single-hierarchy dimensions, concatenated rollup MVs will take less
time to build than grouping set MVs. If you have multiple-hierarchy dimensions,
grouping set MVs generally will take less time to build.

Partial Materialization

MV Size

If you want to store partially aggregated data in your materialized views, the
grouping set form provides more flexibility than the concatenated rollup form.
Grouping set form supports asymmetric partial materialization. Concatenated
rollup form supports only symmetric partial materialization.

With grouping set form, you could store month level summaries for specific level
combinations only. For example, you could summarize month data for a certain
type of product within a given geographical region, without regard for the other
dimension levels associated with the data. You would do this by specifying
individual level combinations before generating the script for creating the MV.

With concatenated rollup form, you could store month level summaries only, but
they would be aggregated over all of the dimension hierarchies associated with the
cube. You could choose to limit the MV to month data by editing the script for
creating the MV.

Although a grouping set style MV may be very large, it requires significantly less
tablespace than concatenated rollup style MVs. The multiple concatenated rollup
style MVs for a cube store redundant data, since each hierarchy combination is
stored in a separate MV. A grouping set style MV for a cube contains all hierarchy
combinations within the single MV.

Creating Materialized Views for the OLAP APl 10-7

Choosing the Right Format for Materialized Views

Lineage (Key)

With concatenated rollup form, all the dimension key columns are populated, and
data may only be accessed when its full lineage is specified. With true grouping set
form, dimension key columns may contain null values, and data may be accessed
simply by specifying one or more levels.

Note: In the current release, all MVs, whether generated with
concatenated rollup or with grouping sets, are full lineage
preserving.

10-8 Oracle9i OLAP User’s Guide

Part |l

SQL Access Reference

Part III provides information about PL/SQL packages and procedures that either
create relational views of multidimensional data or embed OLAP DML commands
in their syntax.

This part contains the following chapters:
= Chapter 11, "DBMS_AW"
= Chapter 12, "OLAP_TABLE"

11

DBMS_AW

Using the procedures and functions in the DBM5_AWpackage, SQL programmers
can execute OLAP single-row functions and other OLAP DML commands against
analytic workspace data.

See Also:

« Oracle9i OLAP DML Reference help for the syntax of
individual OLAP DML commands.

» Oracle9i OLAP Developer’s Guide to the OLAP DML for
information on analytic workspace objects.

= PL/SQL User’s Guide and Reference for information about the
DBMS_QUTPUT package.

This chapter includes the following topics:

Summary of DBMS_AW Subprograms
EXECUTE Procedure

GETLOG Function

INTERP_SILENT Procedure

INTERP Function

INTERPCLOB Function
OLAP_EXPRESSION Function
PRINTLOG Procedure

DBMS_AW

111

Summary of DBMS_AW Subprograms

Summary of DBMS_AW Subprograms

The following table describes the subprograms provided in DBM5_AW

Table 11-1 DBMS_AW Subprograms

Subprogram Description

"EXECUTE Procedure" on
page 11-3

"PRINTLOG Procedure"
on page 11-16

"INTERP_SILENT
Procedure" on page 11-6

"INTERP Function" on
page 11-8

"INTERPCLOB Function"
on page 11-10

"OLAP_EXPRESSION
Function" on page 11-12

"PRINTLOG Procedure"
on page 11-16

Executes one or more OLAP DML commands. Input and
output is limited to 4K. Typically used in an interactive session
using an analytic workspace.

Returns the session log from the last execution of the | NTERP
or | NTERPCL OB functions.

Executes one or more OLAP DML commands and suppresses
the output. Input is limited to 4K and output to 4G.

Executes one or more OLAP DML commands. Input is limited
to 4K and output to 4G. Typically used in applications when
the 4K limit on output for the EXECUTE procedure is too
restrictive.

Executes one or more OLAP DML commands. Input and
output are limited to 4G. Typically used in applications when
the 4K input limit of the | NTERP function is too restrictive.

Returns the result set of a single-row function calculated in an
analytic workspace.

Prints a session log returned by the | NTERP, | NTERCLOB, or
CETLOG functions.

11-2 Oracle9i OLAP User’s Guide

Summary of DBMS_AW Subprograms

EXECUTE Procedure

Syntax

Parameters

Usage Notes

The EXECUTE procedure executes one or more OLAP DML commands and directs
the output to a printer buffer. It is typically used to manipulate analytic workspace
data within an interactive SQL session.

When you are using SQL*Plus, you can direct the printer buffer to the screen by
issuing the following command:

SET SERVERQUT ON
If you are using a different program, refer to its documentation for the equivalent
setting.

Input and output is limited to 4K. For larger values, refer to the | NTERP and
| NTERPCLOB functions in this package.

DBMS_AW EXECUTE (
ol ap_comands IN VARCHAR2
t ext QUT VARCHAR?2) ;

Table 11-2 EXECUTE Procedure Parameters

Parameter Description

ol ap- conmands One or more OLAP DML commands separated by semicolons.

t ext Output from the OLAP engine in response to the OLAP
commands.

Guidelines for Using Quotation Marks in OLAP DML Commands

The SQL processor evaluates the OLAP DML commands, either in whole or in part,
before sending them to Oracle OLAP for processing. Follow these guidelines when
formatting the OLAP DML commands in the ol ap- commands parameter:

= Wherever you would normally use single quote (") in an OLAP DML
command, use two single quotes (" '). The SQL processor strips one of the
single quotes before it sends the OLAP DML command to Oracle OLAP.

DBMS_AW 11-3

EXECUTE Procedure

« Inthe OLAP DML, a double quote (") indicates the beginning of a comment.

Effect of the OUTFILE Command
This procedure does not print the output of the DML commands when you have
redirected the output by using the OLAP DML QUTFI LE command.

Example

The following sample SQL*Plus session attaches an analytic workspace named
XADEMDO, creates a formula named COST_PP in XADEMO, and displays the new
formula definition.

SQL> SET SERVERQUT ON

SQL> EXECUTE DBMS_AW EXECUTE(' AW ATTACH xademo RW DEFINE cost _pp FORMULA
LAG(anal ytic_cube_f.costs, 1, tinme, LEVELREL tine_levelrel)’);

PL/ SQL procedure successful |y conpl eted.
SQL> EXECUTE DBMS_AW EXECUTE(’ DESCRI BE cost_pp’);

DEFI NE COST_PP FORMULA DECI MAL <CHANNEL GECGRAPHY PRCDUCT TI ME>
EQ lag(anal ytic_cube_f.costs, 1, tine, levelrel tine.levelrel)

PL/ SQL procedure successful ly conpl eted.

11-4 Oracle9i OLAP User’s Guide

Summary of DBMS_AW Subprograms

GETLOG Function

Syntax

Returns

Example

This function returns the session log from the last execution of the | NTERP or
| NTERPCL OB functions in this package.

To print the session log returned by this function, use the DBMS_AW PRI NTLOG
procedure.

DBMVS_AW GETLOR)
RETURN CLOB;

The session log from the latest call to | NTERP or | NTERPCLOB.

The following example shows the session log r et ur ned by a call to | NTERP, then
shows the identical session log returned by GETLOG

SQL> SET SERVERQUT ON SI ZE 1000000
SQL> EXECUTE DBMS_AW PRI NTLOG(DBMS_AW | NTERP(" AW ATTACH xadeno; LI STNAVES AGGVAP'));
2 AGGVAPs

ANALYTI C_CUBE. AGGVAP. 1
XADEMO_SALES_MULTI KEY_CUBE. AGGVAP. 1

PL/ SQL procedure successful ly conpl eted.

SQL> EXECUTE DBMS_AW PRI NTLOG DBMS_AW GETLOX)) ;
2 AGGVAPs

ANALYTI C_CUBE. AGGVAP. 1
XADEMO_SALES_MULTI KEY_CUBE. AGGVAP. 1

PL/ SQL procedure successfully conpl et ed.

DBMS_AW 11-5

INTERP_SILENT Procedure

INTERP_SILENT Procedure

Syntax

Parameters

Usage Notes

Example

The | NTERP_SI LENT procedure executes one or more OLAP DML commands and
suppresses all output from them. It does not suppress error messages from the
OLAP command interpreter.

Input to the | NTERP_SI LENT function is limited to 4K. If you want to display the
output of the OLAP DML commands, use the EXECUTE procedure, or the | NTERP
or | NTERPCL OB functions.

DBVS_AW | NTERP_SI LENT (
ol ap- cormands I N VARCHAR?) ;

Table 11-3 DBMS_AW.INTERP Function Parameters

Parameter Description

ol ap- conmands One or more OLAP DML commands separated by semi-colons.

Guidelines for Using Quotation Marks in OLAP DML Commands

The SQL processor evaluates the OLAP DML commands, either in whole or in part,
before sending them to Oracle OLAP for processing. Follow these guidelines when
formatting the OLAP DML commands in the ol ap- commands parameter:

= Wherever you would normally use single quote (") in an OLAP DML
command, use two single quotes (" '). The SQL processor strips one of the
single quotes before it sends the OLAP DML command to Oracle OLAP.

= Inthe OLAP DML, a double quote (") indicates the beginning of a comment.

The following commands show the difference in message handling between
EXECUTE and | NTERP_SI LENT. Both commands attach the XADEMO analytic
workspace in read-only mode. However, EXECUTE displays a warning message,
while | NTERP_SI LENT does not.

SQL> EXECUTE DBMS_AW EXECUTE(’ AW ATTACH xadeno’);

11-6 Oracle9i OLAP User’s Guide

Summary of DBMS_AW Subprograms

| MPORTANT: Anal yti ¢ workspace XADEMO is read-only. Therefore, you will
not be able to use the UPDATE command to save changes to it.

PL/ SQL procedure successfully conpl eted.

SQL> EXECUTE DBMS_AW | NTERP_SI LENT(" AW ATTACH xadeno’) ;

PL/ SQL procedure successfully conpl eted.

DBMS_AW 11-7

INTERP Function

INTERP Function

Syntax

Parameters

Returns

Usage Notes

The | NTERP function executes one or more OLAP DML commands and returns the
session log in which the commands are executed. It is typically used in applications
when the 4K limit on output for the EXECUTE procedure may be too restrictive.

Input to the | NTERP function is limited to 4K. For larger input values, refer to the
| NTERPCL OB function of this package.

You can use the | NTERP function as an argument to the PRI NTLOG procedure in
this package to view the session log. See the example.

DBNVS_AW | NTERP (
ol ap- cormands I N VARCHAR?)
RETURN CLOB;

Table 11-4 DBMS_AW.INTERP Function Parameters

Parameter Description

ol ap- conmands One or more OLAP DML commands separated by semi-colons.

The log file for the Oracle OLAP session in which the OLAP DML commands were
executed.

Guidelines for Using Quotation Marks in OLAP DML Commands

The SQL processor evaluates the OLAP DML commands, either in whole or in part,
before sending them to Oracle OLAP for processing. Follow these guidelines when
formatting the OLAP DML commands in the ol ap- commands parameter:

= Wherever you would normally use single quote (") in an OLAP DML
command, use two single quotes (" '). The SQL processor strips one of the
single quotes before it sends the OLAP DML command to Oracle OLAP.

= Inthe OLAP DML, a double quote (") indicates the beginning of a comment.

11-8 Oracle9i OLAP User’s Guide

Summary of DBMS_AW Subprograms

Effect of the OUTFILE Command
This function does not return the output of the DML commands when you have
redirected the output by using the OLAP DML QUTFI LE command.

Example

The following sample SQL*Plus session attaches an analytic workspace named
XADEMOand lists the members of the PRODUCT dimension.

SQL> SET SERVEROUT ON S| ZE 1000000

SQL> EXECUTE DBMS_AW PRI NTLOG(DBMS_AW | NTERP(® AW ATTACH cl oned; REPCRT product’));
PRODUCT

L1. TOTALPROD

L2. ACCDI V

L2. AUDI ODI V

L2. VI DECDI V

L3. AUDI QOOVP

L3. AUDI OTAPE

PL/ SQL procedure successfully conpl et ed.

DBMS_AW 11-9

INTERPCLOB Function

INTERPCLOB Function

Syntax

Parameters

Returns

Usage Notes

The | NTERPCLOB function executes one or more OLAP DML commands and
returns the session log in which the commands are executed. It is typically used in
applications when the 4K limit on input for the | NTERP function may be too
restrictive.

You can use the | NTERPCL OB function as an argument to the PRI NTLOG procedure
in this package to view the session log. See the example.

The syntax for the | NTERPCLOB procedure is shown below.

DBMS_AW | NTERPCLOB (
ol ap- cormands IN CLOB)
RETURN CLOB;

Table 11-5 DBMS_AW.INTERPCLOB Function Parameters

Parameter Description

ol ap- conmands One or more OLAP DML commands separated by semi-colons.

The log for Oracle OLAP session in which the OLAP DML commands were
executed.

Guidelines for Using Quotation Marks in OLAP DML Commands

The SQL processor evaluates the OLAP DML commands, either in whole or in part,
before sending them to Oracle OLAP for processing. Follow these guidelines when
formatting the OLAP DML commands in the ol ap- commands parameter:

= Wherever you would normally use single quote (") in an OLAP DML
command, use two single quotes (" '). The SQL processor strips one of the
single quotes before it sends the OLAP DML command to Oracle OLAP.

= Inthe OLAP DML, a double quote (") indicates the beginning of a comment.

11-10 Oracle9i OLAP User’s Guide

Summary of DBMS_AW Subprograms

Example

Effect of the OUTFILE Command
This function does not return the output of the OLAP DML commands when you
have redirected the output by using the OLAP DML QUTFI LE command.

The following sample SQL*Plus session creates an analytic workspace named
ELECTRONI CS, imports its contents from an EIF file stored in the dbs directory
alias, and displays the contents of the analytic workspace.

SQL> SET SERVERQUT ON SI ZE 1000000
SQL> EXECUTE DBMS_AW PRI NTLOG DBMS_AW | NTERPCLOB(' AW CREATE el ectroni cs; | MPORT
ALL FROM EIF FILE '’ dbs/el ectronics.eif’’ DATA DFNS, DESCRIBE'));

DEFI NE GEOGRAPHY DI MENSI ON TEXT W DTH 12
LD Geography Di nension Val ues

DEFI NE PRODUCT DI MENSI ON TEXT W DTH 12
LD Product Di nension Val ues

DEFI NE TI ME DI MENSI ON TEXT W DTH 12

LD Tine Dinmension Val ues

DEFI NE CHANNEL DI MENSI ON TEXT W DTH 12
LD Channel Dinension Val ues

PL/ SQL procedure successfully conpl eted.

DBMS_AW 11-11

OLAP_EXPRESSION Function

OLAP_EXPRESSION Function

The OLAP_EXPRESSI ON function allows you to execute single-row numeric
functions in the analytic workspace and thus generate custom measures in SELECT
statements. In addition to calculating an expression, OLAP_EXPRESSI ON can be
used in the WHERE and ORDER BY clauses to modify the result set of a SELECT.

Syntax
OLAP_EXPRESSI ON(
r2c IN RAW32),
expressi on IN VARCHAR2)
RETURN NUMBER
Parameters
Table 11-6 OLAP_EXPRESSION Function Parameters
Parameter Description
r2c The name of a column populated by the ROARRCELL clause of
the limit map in a call to the OLAP_TABLE function.
expressi on A calculation that will be performed in the analytic workspace.
Returns

An evaluation of expression for each row of the table object returned by the
OLAP_TABLE function.

Usage Notes

You can use OLAP_EXPRESSI ON only with a table object returned by the
OLAP_TABLE function. The returned table object must have a column populated by
a ROA2CELL clause in the limit map used in the call to OLAP_TABLE. Refer to
Chapter 12, "OLAP_TABLE" for more information about using this function.

11-12 Oracle9i OLAP User’s Guide

Summary of DBMS_AW Subprograms

Examples

View Used in These Examples
The following script was used to create a view named MEASURE_VI EWwhich is
used in the examples of OLAP_EXPRESSI ON that follow.

CREATE TYPE neasure_row AS OBJECT (

time VARCHAR2(12) ,
geogr aphy VARCHAR2(30) ,
pr oduct VARCHAR2(30) ,
channel VARCHAR2(30) ,
sal es NUMBER(16) ,
cost NUMBER(16) ,
pronotions NUVBER(16) ,
quot a NUMBER(16) ,
units NUMBER(16) ,
r2c RAW 32));

/

CREATE TYPE neasure_tabl e AS TABLE OF neasure_row,
/

CREATE OR REPLACE VI EW neasure_vi ew AS
SELECT sal es, cost, pronmotions, quota, units,
tinme, geography, product, channel, r2c
FROM TABLE(CAST(OLAP_TABLE(
' xadeno DURATI ON SESSI ON
"nmeasure_table’,

" MEASURE sal es FROM xadeno_anal ytic_cube_f. sal es
MEASURE cost FROM xadeno_anal ytic_cube_f.costs
MEASURE pronot i ons FROM xadeno_anal ytic_cube_f. prono
MEASURE quota FROM xadermo_anal ytic_cube_f. quota
MEASURE units FROM xadenmo_anal ytic_cube f.units
DI MENSI ON time FROM xadeno_tine WTH

H ERARCHY xadeno_ti me_nenber _parentrel
| NH ERARCHY xadero_t i me_nmenber _i nhi er
DI MENSI ON geogr aphy FROM xadeno_geogr aphy W TH
HI ERARCHY xadeno_geogr aphy_nenber _parentrel
| NHI ERARCHY xadeno_geogr aphy_nenber _i nhi er
DI MENSI ON product FROM xademo_pr oduct W TH
HI ERARCHY xadeno_pr oduct _menber _parentrel
| NHI ERARCHY xadeno_pr oduct _nenber _i nhi er
DI MENSI ON channel FROM xademo_channel W TH
H ERARCHY xadeno_channel _nmenber _parentrel

DBMS_AW 11-13

OLAP_EXPRESSION Function

| NHI ERARCHY xademo_channel _nenber _i nhi er
ROMCELL r2c’)
AS neasure_table))

VWHERE sal es |'S NOT NULL;
/
COWM T
/
GRANT SELECT ON neasure_view TO PUBLIC,

Time Series Function With a WHERE Clause

The following SELECT statement calculates an expression with an alias of

PERI ODAGO, and limits the result set to calculated values greater than 200,000. The
calculation uses the LAG function to return the value of the previous time period.

SELECT time, cost, OLAP_EXPRESSI ON(r2c,
" LAG xadeno_anal ytic_cube_f.costs, 1, xadeno_tineg,
LEVELREL xadeno_time_nenmber | evelrel)’) periodago
FROM neasur e_vi ew
WHERE geography = 'L1. WORLD AND
CHANNEL = ' STANDARD 2. TOTALCHANNEL' AND
PRODUCT = ' L1. TOTALPROD and
OLAP_EXPRESSI O\(r2c, 'LAQ xademp_anal ytic_cube_f.costs, 1, xadeno_tineg,
LEVELREL xadeno_time_menber _|evelrel)’) > 200000;

This SELECT statement produces these results.

TI ME COST PERI ODAGO
L1. 1997 1078031 2490243. 07
L2. QL. 97 615399 560379. 445
L2. Q.96 649004 615398. 858
L2. Q.97 462632 649004. 473
L2. (B. 96 582693 462632. 064
L2. 4. 96 698166 582693. 091
L3. AUR6 194498 209476. 344
L3. FEB96 186762 252738. 981
L3. JAN96 185755 205214. 946

Numeric Calculation With an ORDER BY Clause

This example subtracts costs from sales to calculate profit, and gives this expression
an alias of PROFI T. The rows are ordered by geographic areas from most to least
profitable.

11-14 Oracle9i OLAP User’s Guide

Summary of DBMS_AW Subprograms

SELECT geography, sales, cost, OLAP_EXPRESSI O\(r 2c,
' xadeno_anal ytic_cube f.sales - xademp_anal ytic_cube f.costs’) profit
FROM neasure_vi ew

WHERE
channel = ' STANDARD 2. TOTALCHANNEL' AND
product = 'L1. TOTALPROD AND

time = ' L3. APRO7’
ORDER BY OLAP_EXPRESSI ON(r 2c,
' xadeno_anal ytic_cube f.sal es - xadeno_anal ytic_cube f.costs’) DESC

This SELECT statement produces these results.

GECGRAPHY SALES casT PROFI T
L1. WORLD 9010260 209476 8800783. 17
L2. EURCPE 3884776 95204 3789571. 85
L2. AVERI CAS 2734436 55322 2679114. 66
L2. ASI A 1625379 37259 1588120. 61
L3. USA 1603043 27547 1575496. 86
L2. AUSTRALI A 765668 21692 743976. 058
L3. K 733090 19144 713945. 952
L3. CANADA 731734 19666 712067. 455
L4. NEWORK 684008 8020 675987. 377
L3. GERVANY 659428 12440 646988. 197
L3. FRANCE 596767 19307 577460. 113

DBMS_AW 11-15

PRINTLOG Procedure

PRINTLOG Procedure

Syntax

Parameters

Example

This procedure sends a session log returned by the | NTERP, | NTERPCLOB, or
GETLOG functions of this package to the print buffer, using the DBMS_OUTPUT
package in PL/SQL.

When you are using SQL*Plus, you can direct the printer buffer to the screen by
issuing the following command:

SET SERVERQUT ON SI ZE 1000000

The S| ZE clause increases the buffer from its default size of 4K.

If you are using a different program, refer to its documentation for the equivalent
setting.

The syntax for the PRI NTLOG procedure is shown below.

DBMS_AW PRI NTLOG (
session-1og IN CLOB);

Table 11-7 DBMS_AW.PRINTLOG Procedure Parameters

Parameter Description

session-1og The log of a session.

The following example shows the session log returned by the | NTERP function.

SQL> SET SERVERQUT ON SI ZE 1000000
SQL> EXECUTE DBMS_AW PRI NTLOG(DBMS_AW | NTERP(' DESCRI BE anal ytic_cube_f.profit’));

DEFI NE ANALYTI C_CUBE. F. PROFI T FORMULA DECI MAL <CHANNEL
GECGRAPHY PRODUCT TI ME>
EQ anal ytic_cube.f.sales - anal ytic_cube.f.costs

PL/ SQL procedure successfully conpl eted.

11-16 Oracle9i OLAP User’s Guide

12

OLAP_TABLE

This chapter describes how you can use the OLAP_TABLE function in a SQL
SELECT statement to query the multidimensional data stored in an analytic
workspace. This chapter contains the following topics:

= Description

= Preliminary Steps

= Basic Steps

« OLAP_TABLE Reference

= Examples

OLAP_TABLE 12-1

Description

Description

The OLAP_TABLE function extracts data from the LOBs in which workspace data
has been stored and presents the result set in the format of a relational table.
OLAP_TABLE is an implementation of the PL/SQL table functions.

The OLAP_TABLE function can be used in a SQL SELECT statement instead of, or in
addition to, the names of relational tables and views. It presents fully solved data
that is either stored or calculated in an analytic workspace. OLAP_TABLE accepts
parameters that are passed to the OLAP engine, which selects, manipulates, and
returns the data. The WHERE clause of a SELECT statement that includes a call to
OLAP_TABLE only needs to identify the result set; it does not need to perform any
calculations. If it does include calculations, they will be performed by the SQL
engine, not the OLAP engine.

SELECT statements that use OLAP_TABLE can be used during database
maintenance to create relational views, and they can be used interactively to fetch
data directly into an application.

See Also: PL/SQL User’s Guide and Reference for a discussion of
PL/SQL table functions.

Preliminary Steps

Most applications require the data to be presented in a specific format. You must
know the requirements of your application in order to construct a call to
OLAP_TABLE that returns a result set that complies with those requirements.

In addition, you need to gather information about the data containers in the analytic
workspace and decide how you are going to map them to the columns of a
relational view. These are the steps you might take:

1. Identify the measures that you want to make available to applications.

2. Identify the dimensions (including composite dimensions) of the measures.
3. For hierarchical dimensions, identify the objects that support the hierarchy.
4

Identify the dimension attributes, which are data containers that provide
additional information about the dimensions.

5. If you plan to create OLAP catalog metadata, generate the additional data
containers that are needed by the Java-based OLAP APIL

Following are descriptions of these data containers.

12-2 Oracle9i OLAP User’s Guide

Preliminary Steps

Measures

Dimensions

Hierarchies

Measures are VARl ABLE, FORMULA, or RELATI ON containers with a numeric data
type. If you are creating views for a star schema, you will experience the best
performance and data retrieval if the measures represented in a single fact view
have the exact same dimensions listed in the exact same order.

For example, the following variables compose the same cube and are dimensioned
identically.

DEFI NE ANALYTI C_CUBE _F. COSTS VAR ABLE DECI MAL <ANALYTI C_CUBE_COWPOSI TE <CHANNEL CGEOCGRAPHY
PRODUCT TI ME>>

DEFI NE ANALYTI C_CUBE F. SALES VAR ABLE DECI MAL <ANALYTI C_CUBE _COWPOSI TE <CHANNEL GEOGRAPHY
PRODUCT TI ME>>

You can combine these variables with formulas derived from them. Although
formulas do not use composites, they are defined with the same dimensions in the
same order as their source variables. For example, the following command creates a
formula named ANALYTI C_CUBE_PROCFI T, which is calculated by subtracting
ANALYTI C_CUBE_F. COSTS from ANALYTI C_CUBE_F. SALES.

->DEFI NE anal ytic_cube_profit FORMULA anal ytic_cube_f.sales - analytic_cube_f.costs

The resulting formula is dimensioned the same as the source variables, but without
the composite.
->DESCRI BE anal ytic_cube_profit

DEFI NE ANALYTI C_CUBE_PROFI T FORMULA DECI MAL <CHANNEL GEOGRAPHY PRODUCT TI ME>
EQ anal ytic_cube_f.sales - analytic_cube_f.costs

You can also specify formulas within the MEASURE clause of the OLAP_TABLE
function.

If a measure is sparse, then it is probably dimensioned by a composite or a conjoint
dimension. The definition of a measure identifies its dimensions.

Dimensions that contain members at all levels of a hierarchy are supported by
several workspace objects that define the hierarchy: hierarchy dimensions,
hierarchy relations, level dimensions, level relations, and “in hierarchy” variables.

OLAP_TABLE 12-3

Preliminary Steps

A flat dimension (that is, one without a hierarchy, or one in which all members are
at the same level of a hierarchy) does not require these supporting objects.

Hierarchy Dimensions

When a dimension has more than one hierarchy, then a hierarchy dimension is used
to identify them. The members of the hierarchy dimension are the names of the
hierarchies.

The following example shows the hierarchy dimension for the GEOGRAPHY
dimension.

- >DESCRI BE geogr aphy_hi erli st
DEFI NE GEOGRAPHY_HI ERLI ST DI MENSI ON TEXT
->REPORT W 25 geography_hierli st

GEOGRAPHY_HI ERLI ST

STANDARD
CONSOLI DATED

Hierarchy Relations

A self-relation identifies the parent of each dimension member. This type of relation
is often called a parent relation. In the following example, the GEOGRAPHY
dimension has a parent relation named GEOGRAPHY_PARENTREL.

GEOGRAPHY_HI ERLI ST also dimensions the parent relation. GEOGRAPHY has two
hierarchies, STANDARD and CONSOL| DATED, which are the dimension members of
GEOGRAPHY_HI ERLI ST.

- >DESCRI BE geogr aphy_nember _parentrel

DEFI NE GEOGRAPHY_MEMBER _PARENTREL RELATI ON GEOGRAPHY <GEOGRAPHY
GEOGRAPHY_HI ERLI ST>

->LIM T geography TO’ L4. KUALALUVPUR

->LIM T geography ADD ANCESTORS USI NG geogr aphy_nenber parentrel
->REPORT W 16 DOAN geography W20 geography_nmenmber _parentrel

12-4 Oracle9i OLAP User’s Guide

Preliminary Steps

------- GEQGRAPHY_MEMBER_PARENTREL- - - - - - - -
----------- GEQGRAPHY_HI ERLI ST-- -« ------

GEOGRAPHY STANDARD CONSCLI DATED
L4. KUALALUMPUR L3. MALAYSI A L6. MALAYSI A

L3. MALAYSI A L2. ASI A NA

L6. MALAYSI A NA L5. ASI A

L2. ASI A L1. WORLD NA

L5. ASI A NA NA

L1. WORLD NA NA

From this example, you can see that levels L1, L2, and L3 are in the STANDARD
hierarchy, and levels L5 and L6 are in the CONSOL| DATED hierarchy. Malaysia and
Asia are each represented by two dimension members, one for each hierarchy.

Level Dimensions

The levels of a dimension hierarchy are defined by the members of a level
dimension. This dimension has a TEXT data type so that the members can have
descriptive names. For example, GEOGRAPHY_LEVELLI ST is the level dimension
for GEOGRAPHY.

- >DESCRI BE geography_| evel | i st

DEFI NE GEOGRAPHY_LEVELLI ST DI MENSI ON TEXT

Six levels are defined for the two GEOGRAPHY hierarchies.
->REPCRT geogr aphy_| evel i st

GEOGRAPHY_LEVELLI ST

In-Hierarchy Variables

If a hierarchical dimension contains members that are excluded from a hierarchy,
then a boolean variable is used to identify whether a dimension member is in the
hierarchy (YES) or not in the hierarchy (NOor NA). If all the members of a dimension
are included in the hierarchy (which is typically the case when there is only one

OLAP_TABLE 12-5

Preliminary Steps

Grouping IDs

hierarchy), then this boolean dimension is not required because there is no
ambiguity. However, if a dimension member is part of one hierarchy but excluded
from another (which is typically the case when there are multiple hierarchies) an NA
value in the hierarchy relation is ambiguous. It can mean either that the member is
at the top level of the hierarchy and therefore has no parent, or that it is excluded
from the hierarchy.

The following example shows an in-hierarchy variable named
CGEOGRAPHY _| NHI ERARCHY defined for the GEOGRAPHY dimension, which has two
hierarchies, STANDARD and CONSOLI| DATED.

- >DESCRI BE geogr aphy_nenber _i nhi er
DEFI NE GEOGRAPHY_MEMBER | NH ER VARI ABLE BOOLEAN <GEOGRAPHY GEOGRAPHY_H ERLI ST>

- >REPORT DOMN geography W12 geography_nenber _i nhi er

- GEOGRAPHY_MEMBER | NHI ER-
- GEOGRAPHY_HI ERLI ST- - -

GEOGRAPHY STANDARD CONSOLI DATED
L4. KUALALUVPUR yes yes
L3. MALAYSI A yes NA
L6. MALAYSI A NA yes
L2. ASIA yes NA
L5. ASI A NA yes
L1. WORLD yes NA

Grouping IDs identify the depth of a dimension member in the hierarchy. You can
create a GID variable manually by using the GROUPI NG D command in the OLAP
DML. Grouping IDs are used by the OLAP API to improve performance.

- >DESCRI BE geogr aphy_nenmber gid
DEFI NE GEOGRAPHY_MEMBER G D VARI ABLE | NTEGER <GEOGRAPHY GEOGRAPHY_H ERLI ST>

- >REPCRT DOMN geography W12 geography_nenber _gi d

12-6 Oracle9i OLAP User’s Guide

Preliminary Steps

- - GEOGRAPHY_MEMBER G D- - -
- - - GEOGRAPHY_H ERLI ST-- - -

GEOGRAPHY STANDARD CONSOLI DATED
L4. KUALALUMPUR 0 0
L3. MALAYSI A 1 NA
L6. MALAYSI A NA 1
L2. ASI A 3 NA
L5. ASI A NA 3
L1. WORLD 7 NA

Parent Grouping IDs

Parent grouping IDs provide the GID value of the parent of each dimension
member. OLAP_TABLE calculates the parent grouping IDs from the member
grouping IDs. Thus, you do not need to define the parent GIDs in an object in the
analytic workspace. However, you do need to specify the PARENTA D clause so that
OLAP_TABLE will generate them.

This information is used by the OLAP API to improve performance. If you specify a
parent relation, then you also need to specify a parent GID.

Family Relations

A family relation is used when generating a view in rollup form, that is, a view in
which a multiple-column key identifies the full parentage of each dimension value.
Each column in the key contains values at one level of the dimension hierarchy. A
family relation formats the information in this way in the analytic workspace.

You can create a family relation manually by defining a relation and populating it
using the Hl ERHEI GHT command in the OLAP DML.

The following is the definition of the family relation for GEOGRAPHY.
- >DESCRI BE geogr aphy_nenber _fani | yrel

DEFI NE GEOGRAPHY_MEMBER _FAM LYREL RELATI ON GEOGRAPHY <GEOGRAPHY
GEOGRAPHY_LEVELLI ST GEOGRAPHY_HI ERLI ST>

->LIM T geography_| evel l'ist TO FIRST 4
->REPORT W 12 DOM geography W16 geography_nenber _familyrel

GECGRAPHY. HI ERLI ST: STANDARD

OLAP_TABLE 12-7

Preliminary Steps

Attributes

--------------------- GEQGRAPHY MEMBER FAM LYREL- - == == seeenmennns
------------------------- GEOGRAPHY _LEVELLI ST- -« - - = ee

GEOR

APHY L4 L3 L2 L1
L4. ADELAI DE L4. ADELAI DE L3. CENTRAL. AUST L2. AUSTRALI A L1. WORLD
L4. AVSTERDAM L4. AVBTERDAM L3. NETHERLANDS L2. EURCPE L1. WORLD
L4. ATHENS L4. ATHENS L3. GREECE L2. EURCPE L1. WORLD
L4. BANGKOK L4. BANGKCK L3. THAI LAND L2. ASI A L1. WORLD

See Also: Oracle9i OLAP DML Reference help for syntax and
examples of the GROUPI NG Dand HI ERHEI GHT commands.

Attributes are typically text variables or relations that provide descriptive
information about dimension members, and are useful for displaying the data.
Dimension members are usually very cryptic, and are more useful for uniquely
identifying the data internally than for labeling the data for users in a table or
graph. For this reason, dimensions often have one or more variables that provide
descriptions of the dimension members.

Attributes can also provide other types of information and be other data types, like
the end date and time span attributes for a time dimension. The following example
shows attributes for the TI ME dimension.

->LIMT time_hierlist TO ' STANDARD
->REPORT DOMN tine tine_short.description tinme_end date time_time_span

LANGUAGELI ST: AMERI CAN_AMVERI CA

---------- TIME_H ERLI ST---------
------------ STANDARD- - - - - === === -
TI ME_SHORT
_DESCRIPTI TIME_END_ TIME_TIME_
TI VE N DATE SPAN
L1.1996 1996 31DEC96 366. 00
L1.1997 1997 31MAY97 151. 00
L2. QL. 96 QL. 9 31MAR96 91. 00

12-8 Oracle9i OLAP User’s Guide

Basic Steps

L2. QL. 97 QL. 97 31MAR97 90. 00
L2. .96 Q. 96 30JUN96 91. 00

Basic Steps
There are three steps to using the OLAP_TABLE function:
1. Define an object type. Equivalent to defining a row.
2. Create a type of these objects. Equivalent to defining a table.
3. Embed a call to the OLAP_TABLE function in a SELECT statement.

Defining a Row

When you define a row, you are actually defining an abstract object type. An
abstract object type is composed of attributes, which are equivalent to the columns
of a table. (These attributes have no relationship to the attributes described in
"Attributes" on page 12-8.) When you ultimately create a relational view, you will
select its columns from these attributes. However, it is generally easier to
understand the process in terms of rows and columns instead of object types and
attributes.

This is the basic syntax for defining a row. The last column is defined as type RAW
and stores information used by the single-row functions in DBM5_AWIf you are not
going to use those functions, then you do not need to define this column.

CREATE TYPE row _nane AS OBJECT (

col um_first dat at ype,
col um_second dat at ype,
col um_| ast RAW 32) ;

Example 12-1 defines a row for a product dimension table. The five VARCHAR2
columns of PRODUCT_ ROW(PRCODUCT, PRODUCT _LABEL, and so forth) ultimately
define the available columns of a product dimension view.

Example 12-1 Creating the PRODUCT_ROW Object Type
CREATE TYPE product _row AS OBJECT (

pr oduct VARCHAR2(30) ,
product _| abel VARCHAR2(30) ,
product _parent VARCHAR2(30) ,

OLAP_TABLE 12-9

Basic Steps

product _| evel VARCHAR2(2) ,

subcat egory VARCHAR2(30) ,

category VARCHAR2(15) ,

all _products VARCHAR2(15)

r2c RAW 32));
Creating a Table

An abstract table type is a collection of abstract object types. The table type
describes the table that will be populated by OLAP_TABLE. This is the basic syntax
for creating a table type:

CREATE TYPE tabl e_nane AS TABLE OF row_nare;

Example 12-2 creates a table of the PRODUCT_ROWobjects that were created in
Example 12-1.

Example 12-2 Creating the PRODUCT_TABLE Table Type
CREATE TYPE product _tabl e AS TABLE OF product _row,

Using OLAP_TABLE in a SELECT Statement

A view of an analytic workspace is like any other relational view in being a saved
SELECT statement. The difference is that the OLAP_TABLE function takes the place
of a relational table.

The following syntax shows how you would use OLAP_TABLE to create a view:

CREATE OR REPLACE VI EWvi ew _nanme AS
SELECT col ums

FROM TABLE(OLAP_TABLE(par aneters))
VWHERE condi ti ons;

Where:

columns are the names of attribute columns in the logical table object that you
defined. You do not need to reference all of the columns, only those that you will
use as targets in the limit map of OLAP_TABLE.

conditions modify the result set from OLAP_TABLE. These operators are processed in
the analytic workspace: =,! =, I N, NOT | N. Conditions that are not supported in the
analytic workspace are executed in SQL on the returned result set.

Applications can also generate SELECT statements on the fly that use calls to
OLAP_TABLE instead of, or in addition to, the names of relational tables. This type

12-10 Oracle9i OLAP User’s Guide

Basic Steps

of application can generate calls to OLAP_TABLE with parameters defined by the
user.

OLAP_TABLE 12-11

OLAP_TABLE Reference

OLAP_TABLE Reference

The OLAP_TABLE function extracts multidimensional data from an analytic
workspace and presents it in the two-dimensional format of a relational table. It can
be used wherever you would use the name of a table or view. The analytic
workspace data can be stored or calculated on the fly from stored data. The result
set is a table of objects that can be joined to relational tables and views, or to other
tables of objects populated by OLAP_TABLE.

Syntax
OLAP_TABLE(
aw_attach IN VARCHAR?,
tabl e_nanme I'N VARCHARZ,
ol ap_comand I N VARCHAR?,
limt _nmap IN VARCHAR?) ;
The OLAP_TABLE function returns the table of objects identified by table_name,
which has been populated according to the rules defined in limit_map.
Parameters

Table 12-1 OLAP_TABLE Function Parameters

Parameter Description
aw_attach The name of the analytic workspace with the source data
table_name The name of the table that has been defined to structure the

multidimensional data in tabular form

olap_command An OLAP DML command that will be executed before the data is
fetched

limit_map A keyword-based map that identifies the source objects in aw_attach and
the target columns in table_name.

AW_ATTACH Parameter

The first parameter of the OLAP_TABLE function provides the name of the analytic
workspace where the source data is stored and specifies how long the analytic
workspace will be attached to your OLAP session, which opens for your first call to
OLAP_TABLE. You can detach the analytic workspace either at the end of the query
or at the end of the session. This is the full syntax of this parameter:

"[owner.]aw_nane DURATI ON QUERY | SESSION

12-12 Oracle9i OLAP User’s Guide

OLAP_TABLE Reference

For example:
' sys. xadeno DURATI ON QUERY’
Specify owner whenever you are creating views that will be accessed by other users.

Otherwise, you can omit the owner if you own the analytic workspace. It is required
only when you are logged in under a different user name than the owner.

If you specify SESSI ON, then you can use an empty string for this parameter in
subsequent calls to OLAP_TABLE, because the analytic workspace is already
attached. If you repeat the connection string unnecessarily, it is simply ignored.

SESSI ON provides slightly better performance than QUERY, because the analytic
workspace is attached only once instead of multiple times in the session. However,
you will not see modifications made by other users in the meantime.

Table_Name Parameter

The second parameter identifies the name of the table of objects that you defined, as
shown in "Creating a Table" on page 12-10. The syntax of this parameter is:

"tabl e_nane’

For example:

" product _t abl e’

OLAP_Command Parameter

The third parameter of the OLAP_TABLE function is a single OLAP DML command.
If you want to execute more than one command, then you must create a program in
your analytic workspace and call the program in this parameter.

A common use of this parameter is to limit one or more dimensions. If you limit one
of the dimensions specified in a DI MENSI ON clause, then the status of that
dimension is changed only during execution of this call to OLAP_TABLE; it does not
affect the rest of your OLAP session. However, other commands can affect your
session.

The syntax of this parameter is:

"ol ap_conmand’

For example:

OLAP_TABLE 12-13

OLAP_TABLE Reference

"LIMT product TO product _menber_| evelrel '’ L2""’

Another use is to execute the OLAP FETCH command in this parameter and omit
the limit map.

The power and flexibility of this parameter comes from its ability to process
virtually any data manipulation commands available in the OLAP DML.

Limit_Map Parameter

The fourth (and last) parameter of the OLAP_TABLE function maps workspace
objects to columns in the table and identifies the role of each one. It is called a limit
map because it combines with the WHERE clause of a SQL SELECT statement to
issue a series of LI M T commands to the analytic workspace. The contents of the
limit map populate the table specified in the table_name parameter.

All or part of the limit map can be stored in a text variable in the analytic
workspace. To insert the variable in the limit map, precede the name of the variable
with an ampersand (&). This practice is called ampersand substitution in the OLAP
DML.

The syntax of the limit map has numerous clauses, primarily for defining dimension
hierarchies. Pay close attention to the presence or absence of commas, since syntax
errors will prevent your limit map from being parsed.

' [MEASURE col utmm FROM {neasure | AW EXPR expression}]

DI MENSI ON [col uim FROM di mensi on
[WTH
[H ERARCHY [col unn FROM hi erar chy_rel ation[(hi erarchy_di mensi on ' hierarchy’)]
[I NH ERARCHY i nhi erarchy_vari abl e]
[G D col um FROM gi d_vari abl e]
[PARENTG D col unn FROM gi d_vari abl e]
[FAM LYREL col 1, col 2, coln FROM
{expressionl, expression2, expressionn |
famly_relation USING | evel _di nension }
[LABEL | abel _variable]]

]
[ATTRI BUTE col unmn FROM attribut e_vari abl e]

12-14 Oracle9i OLAP User’s Guide

OLAP_TABLE Reference

]
[ROMCELL col um]

[LOOP conposi t e_di mensi on]
[PREDMLCVD ol ap_command]
[POSTDMLCVD ol ap_conmand]

Where:

column is the name of a column in the target table.

measure is a business measure that is stored in the analytic workspace.
dimension is a dimension in the analytic workspace

expression is a formula or qualified data reference for objects in the analytic
workspace

hierarchy_relation is a self-relation in the analytic workspace that defines the
hierarchies for dimension.

hierarchy_dimension is a dimension in the analytic workspace that contains the
names of the hierarchies for dimension.

hierarchy is a member of hierarchy_dimension.

inhierarchy_variable is a Boolean variable in the analytic workspace that identifies
whether a dimension member is in hierarchy.

gid_variable is the name of a variable in the analytic workspace that contains the
grouping ID of each dimension member.

attribute_variable is the name of a variable in the analytic workspace that contains
attribute values for dimension.

sparse_dimension is the name of a composite dimension used in the definition of
measuire.

olap_command is an OLAP DML command.

MEASURE column FROM {measure | AW_EXPR expression}

The MEASURE clause maps a variable, formula, or relation in the analytic workspace
to a column in the target table.

Alternatively, the AW EXPRkeyword can map a calculation performed by the OLAP
engine on one or more of these objects to a column. For example, you could specify
calculations such as these:

OLAP_TABLE 12-15

OLAP_TABLE Reference

anal ytic_cube_sal es - anal ytic_cube_cost

or

LAGD F(anal ytic_cube_sales, 1, time, LEVELREL tine.lvlrel)

You can list any number of MEASURE clauses. This clause is optional when, for
example, you wish to create a dimension view.

Refer to "Measures" on page 12-3 for additional information about measures in an
analytic workspace.

DIMENSION [column FROM] dimension...

The DI MENSI ON clause identifies a dimension or conjoint in the analytic workspace
that dimensions one or more measures, attributes, or hierarchies in the limit map.
Refer to "Dimensions" on page 12-3 for additional information about dimensions in
an analytic workspace.

The column subclause is optional when you do not want the dimension members
themselves to be represented in the table. In this case, you should include a
dimension attribute that can be used for data selection.

Every limit map should have at least one DI MENSI ON clause. If the limit map
contains MEASURE clauses, then it should also contain a single DI MENSI ON clause
for each dimension of the measures, unless a dimension is being limited to a single
value. If the measures are dimensioned by a composite, then you must identify each
dimension in the composite with a DI MENSI ON clause. For the best performance
when fetching a large result set, identify the composite in a LOOP clause.

A dimension can be named in only one DI MENSI ON clause. Subclauses of
DI MENSI ONidentify the dimension hierarchy and attributes.

WITH...

The W TH clause introduces a H ERARCHY or ATTRI BUTE subclause. If you omit
these subclauses from the limit map, then omit the W TH clause also. However, if
you include one or both of these subclauses, then precede them with a single W TH
clause.

HIERARCHY [column FROM] hierarchy_relation[(hierarchy_dimension
‘hierarchy’)]...

The HI ERARCHY subclause identifies the parent self-relation in the analytic
workspace that defines the hierarchies for dimension. Refer to "Hierarchies" on

12-16 Oracle9i OLAP User’s Guide

OLAP_TABLE Reference

page 12-3 for additional information on dimension hierarchies in an analytic
workspace.

If hierarchy_dimension has more than one member, then you can specify the one that
you want with a (hierarchy_dimension 'hierarchy’) phrase. To include multiple
hierarchies, specify a H ERARCHY subclause for each one. The hierarchy_dimension is
limited to hierarchy for all workspace objects that are referenced in subsequent
subclauses (that is, | NHI ERARCHY, G D, PARENTA D, and FAM LYREL).

The HI ERARCHY subclause is optional when dimension does not have a hierarchy, or
when the status of dimension has been limited to a single level of the hierarchy.

INHIERARCHY inhierarchy_variable The | NHI ERARCHY subclause identifies a boolean
variable in the analytic workspace that identifies whether a dimension member is in
hierarchy. It is required only when there are members of the dimension that are
omitted from the hierarchy, which is typical when a dimension has multiple
hierarchies. Refer to "In-Hierarchy Variables" on page 12-5 for additional
information about in-hierarchy variables.

GID column FROM gid_variable The G D subclause maps an integer variable in the
analytic workspace, which contains the grouping ID for each dimension member, to
a column in the target table. It is required for Java applications that use the OLAP
API Refer to "Grouping IDs" on page 12-6 for additional information about GIDs.

PARENTGID column FROM gid_variable The PARENTA D subclause calculates the
grouping IDs for the parent relation using the GID variable in the analytic
workspace. The parent GIDs are not stored in a workspace object. Instead, you
specify the same GID variable for the PARENTA D clause that you used in the GID
clause.

The PARENTG D clause is recommended for Java applications that use the OLAP
API Refer to "Grouping IDs" on page 12-6 for additional information about GIDs.

FAMILYREL col1, col2, coln FROM {expression1, expression2, expressionn |

family_relation USING level_dimension } [LABEL label_variable] The FAM LYREL subclause
is used primarily to map a family relation in the analytic workspace to multiple
columns in the target table. List the columns in the order of level_dimension. If you
do not want a particular level included, then specify null for the target column. The
resulting view is in rollup form, in which each level of the hierarchy is represented
in a separate column, and the full parentage of each dimension member is identified
within the row. Refer to "Family Relations" on page 12-7 for more information about
family relations.

OLAP_TABLE 12-17

OLAP_TABLE Reference

The FAM LYREL subclause can also be used to map a list of qualified data
references (QDRs) to multiple columns. In this usage, the first QDR maps to the first
column, the second QDR maps to the second column, and so forth.

The LABEL keyword identifies a text attribute that provides more meaningful
names for the dimension members.

You can use multiple FAM LYREL clauses for each hierarchy.

ATTRIBUTE column FROM attribute_variable

The ATTRI BUTE clause maps a variable in the analytic workspace to a column in
the target table. If attribute_variable has multiple dimensions, then values are
mapped for all members of dimension, but only for the first member in the current
status of additional dimensions. For example, if your attributes have a language
dimension, then you must set the status of that dimension to a particular language.
You can set the status of dimensions in a PREDM_CND clause.

ROW2CELL column

The ROACELL clause populates a RAW 32) column with information needed by
the single-row functions in the DBMS_AWpackage. Use this clause when creating a
view that will be used by these functions.

LOOP sparse_dimension

The LOCP clause identifies a single named composite that dimensions one or more
measures specified in the limit map. It improves performance when fetching a large
result set; however, it can slow the retrieval of a small number of values.

PREDMLCMD olap_command

The PREDMLCNMD specifies an OLAP DML command that is executed before the data
is fetched from the analytic workspace into the target table. It can be used, for
example, to execute a model or forecast whose results will be fetched into the table.

POSTDMLCMD olap_command

The POSTDM.CMD specifies an OLAP DML command that is executed after the data
is fetched from the analytic workspace into the target table. It can be used, for
example, to delete objects or data that were created by commands in the
PREDM_CMD clause, or to restore the dimension status that was changed in a
PREDMLCMD clause.

12-18 Oracle9i OLAP User’s Guide

Examples

Examples

Because different applications have different requirements, several different formats
are commonly used for fetching data into SQL from an analytic workspace. The
examples in this chapter show how to create views using a variety of different
formats.

Although these examples are shown as views, the SELECT statements can be
extracted from them and used directly to fetch data from an analytic workspace into
an application.

Creating a View

To create a view, use a text editor to create a PL/SQL script that defines the row, the
table, and the view. Example 12-3 is a template that you can use as the starting
point for the SQL scripts that you will develop for views of your analytic
workspace. You can then execute the script with the @command in SQL*Plus.

Example 12-3 Template for Creating a View

SET ECHO ON
SET SERVERQUT ON

DROP TYPE tabl e_obj;
DROP TYPE row_obj ;

CREATE TYPE row obj AS OBJECT (

col um_first dat at ype,
col um_next dat at ype,
col um_| ast dat atype);

/
CREATE TYPE table_obj AS TABLE OF row obj;
/
CREATE OR REPLACE VI EWvi ew AS
SELECT col um1, colum2, col umn
FROM TABLE(OLAP_TABLE(
'connection',
"table _obj’,
"ol ap_comand’,
"limt_mp'));
/
COWM T
/
GRANT SELECT ON vi ew TO PUBLIC,

OLAP_TABLE 12-19

Examples

Creating Views of Embedded Total Dimensions

Example 12—4 shows the PL/SQL script used to create a view of the TI ME
dimension STANDARD hierarchy.

Example 12—4 Script for a Dimension View
CREATE TYPE time_std_row AS CBJECT (

time_id VARCHAR2(16) ,
standard_short _| abel VARCHAR2(16) ,
standard_end date DATE,
standard_ti mespan NUMBER(6)) ;

/

CREATE TYPE time_std_table AS TABLE OF tinme_std_row;
/

CREATE OR REPLACE VIEWtime_std_view AS
SELECT time_id, standard_short | abel, standard _end_date, standard_tinespan
FROM TABLE(OLAP_TABLE(’ xadeno DURATI ON SESSION', 'tine_std_table’,

"LIMT time_hierlist TO' ' STANDARD '’,

"DIMENSION time_id FROMtime WTH

H ERARCHY ti ne_menber parentrel

| NH ERARCHY ti me_nenber _i nhi er

ATTRI BUTE standard_short | abel FROMtine_short. description

ATTRI BUTE standard_end_date FROMtime_end_date

ATTRI BUTE standard_ti mespan FROM tine_time_span'));

12-20 Oracle9i OLAP User’s Guide

Examples

SQL> SELECT * FROM time_std_view;

TIME_ID STANDARD STANDARD_ STANDARD TI MESPAN

L1.1996 1996 31- DEC- 96 366
L1.1997 1997 31- MAY- 97 151
L2.Q1.96 Q.96 31-MAR-96 91
L2.Q2.96 Q.96 30- JUN-96 91
L2.(8.96 (8.96 30- SEP- 96 92
L2. Q4. 96 Q4. 96 31-DEC 96 92
L2.QL.97 QL.97 31-MAR-97 90
L2.Q. 97 Q.97 31-MAY-97 61
L3. JAN96 Jan96 31- JAN-96 31
L3. FEB96 Feb96 29- FEB- 96 29
L3. MARI6 Mar96 31- MAR- 96 31

Note: Be sure to verify that you have created the views correctly
by issuing SELECT statements against them. Only at that time will
any errors in the call to OLAP_TABLE show up.

Creating Views of Embedded Total Measures

In a star schema, a separate measure view is needed with columns that can be
joined to each of the dimension views. Example 12-5 shows the PL/SQL script used
to create a measure view with a column populated by ROARRCELL to support custom
measures. For an example of creating a custom measure, refer to
"OLAP_EXPRESSION Function" on page 11-12.

Example 12-5 Script for a Measure View
CREATE TYPE neasure_row AS OBJECT (

tine VARCHAR2(12) ,
geogr aphy VARCHAR2(30) ,
pr oduct VARCHAR2(30) ,
channel VARCHAR2(30) ,
sal es NUMBER(16) ,
cost NUVBER(16) ,
pronot i ons NUVBER(16) ,
quot a NUVBER(16) ,
units NUMVBER(16) ,

OLAP_TABLE 12-21

Examples

rac RAW32));
/

CREATE TYPE neasure_table AS TABLE OF neasure_row,
/

CREATE OR REPLACE VI EW neasure_vi ew AS
SELECT sal es, cost, pronotions, quota, units,
time, geography, product, channel, r2c
FROM TABLE(OLAP_TABLE(

" xadeno DURATI ON SESSI ON ,

"neasure_table’,

" MEASURE sal es FROM anal ytic_cube_f.sal es
MEASURE cost FROM anal ytic_cube_f.costs
MEASURE pronotions FROM anal yti c_cube_f. promo
MEASURE quota FROM anal ytic_cube_f. quota
MEASURE units FROM anal ytic_cube_f.units
DIMENSION tinme FROMtime WTH

H ERARCHY ti ne_menber _parentrel
I NH ERARCHY ti me_menber _i nhi er
DI MENSI ON geogr aphy FROM geogr aphy W TH
H ERARCHY geogr aphy_nenber _parentrel
| NHI ERARCHY geogr aphy_menber _i nhi er
DI MENSI ON product FROM product W TH
H ERARCHY product _nenber_parentrel
I NHI ERARCHY pr oduct _nenber _i nhi er
DI MENSI ON channel FROM channel W TH
H ERARCHY channel _nenber_parentrel
I NH ERARCHY channel _nenber _i nhi er
ROWRCELL r2c’))
WHERE sal es 1S NOT NULL;

SQL> SELECT channel, sales, cost, promotions, quota, units FROM neasure_view
VHERE product = 'L1. TOTALPROD
AND geography = 'L1. WORLD

AND time = 'L1.1996;
CHANNEL SALES COST PROMOTI ONS QUOTA UNI TS
STANDARD 1. CATALOG 76843552 125398 110249 16525 25209
STANDARD 1. DI RECT 41403560 2364845 518649 5458917 118851
STANDARD_2. TOTALCHANNEL 118247112 2490243 628898 5475442 144060

12-22 Oracle9i OLAP User’s Guide

Examples

Creating Views in Rollup Form

Rollup form uses a column for each hierarchy level to show the full parentage of
each dimension member. The only difference between the syntax for rollup form
and the syntax for embedded total form is the addition of a FAM LYREL clause in
the definition of each dimension in the limit map.

Example 12-6 shows the PL/SQL script used to create a rollup view of the
PRODUCT dimension. It shows a dimension view to highlight the differences in the
syntax of the limit map from the one used for the embedded total form, as shown in
Example 124, "Script for a Dimension View". Note that the target columns for these
levels are listed in the FAM LYREL clause from base level to most aggregate, which
is the order they are listed in the level list dimension. The family relation returns
four columns. The most aggregate level (all products) is omitted from the view by
mapping it to null.

Example 12-7 shows the alternative syntax for the FAM LYREL clause, which uses
QDRs to identify exactly which columns will be mapped from the family relation.

These two limit maps generate identical views.

Example 12-6 Script for a Rollup View of Products
CREATE TYPE product _row AS OBJECT (

equi pnent VARCHAR2(20) ,
conponent s VARCHAR2(20),
di vi si ons VARCHAR2(20)) ;

/

CREATE TYPE product _tabl e AS TABLE OF product _row,
/

CREATE OR REPLACE VI EW product _vi ew AS
SELECT equi pment, conponents, divisions
FROV TABLE(OLAP_TABLE(' xadeno DURATI ON QUERY', 'product table’,

" DI MENSI ON product W TH
H ERARCHY product _menber _parentrel
FAM LYREL equi pment, conponents, divisions, null
FROM product _menber _familyrel USING product | evellist
LABEL product _short. description

"))

SQL> SELECT * FROM product _view

OLAP_TABLE 12-23

Examples

ORDER BY di vi si ons, conponents, equi pment;

EQUI PMENT COVPONENTS DI VI SI ONS
Chrm Cas Audi 0 Tape Accessory Div
M| Cassette Audi o Tape Accessory Div
Std Cassette Audi o Tape Accessory Div
Audi o Tape Accessory Div

Standard VCR VCR Video Div

Stereo VCR VCR Video Div

VCR Video Div

Video Div

Example 12—-7 Script Using QDRs in the FAMILYREL Clause
CREATE TYPE product _row AS OBJECT (

equi pnent VARCHAR2(15) ,
conponent s VARCHAR2(15) ,
di vi si ons VARCHAR2(15)) ;

/

CREATE TYPE product _table AS TABLE OF product row,
/

CREATE OR REPLACE VI EW product _vi ew AS
SELECT equi pment, conponents, divisions
FROM TABLE(OLAP_TABLE(’ xadeno DURATI ON QUERY', ’product _table’,

" DI MENSI ON product WTH
H ERARCHY product _menber parentrel
FAM LYREL equi prent, conponents, divisions FROM
product _nenmber _familyrel (product _levellist "'L4" "),
product _nenmber _fami | yrel (product _levellist '"L3 "),
product _nermber _familyrel (product levellist ""L2'")
LABEL product _short. description
"))
/

SQL> SELECT * FROM product _vi ew
ORDER BY di vi si ons, conponents, equi pment;

EQUI PMENT COVPONENTS DI VI SI ONS

12-24 Oracle9i OLAP User’s Guide

Examples

Chrm Cas
M| Cassette
Std Cassette

Standard VCR
Stereo VCR

Audi 0 Tape
Audi 0 Tape
Audi o Tape
Audi 0 Tape

VCR
VCR
VCR

Accessory
Accessory
Accessory
Accessory

Video Div
Video Div
Video Div
Video Div

OLAP_TABLE 12-25

Examples

12-26 Oracle9i OLAP User’s Guide

Part |V

OLAP Catalog Metadata APl Reference

Part IV describes the PL/SQL APIs for creating and viewing CWWR metadata.
This part contains the following chapters:

= Chapter 13, "Using the OLAP Catalog Metadata APIs"

= Chapter 14, "Viewing OLAP Catalog Metadata"

= Chapter 15, "CWM2_OLAP_AW_ACCESS"

= Chapter 16, "CWM2_OLAP_AW_CREATE"

= Chapter 17, "CWM2_OLAP_CUBE"

« Chapter 18, "CWM2_OLAP_DIMENSION"

« Chapter 19, "CWM2_OLAP_DIMENSION_ATTRIBUTE"
= Chapter 20, "CWM2_OLAP_HIERARCHY"

= Chapter 21, "CWM2_OLAP_LEVEL"

= Chapter 22, "CWM2_OLAP_LEVEL_ATTRIBUTE"

= Chapter 23, "CWM2_OLAP_MEASURE"

= Chapter 24, "CWM2_OLAP_METADATA_REFRESH"

« Chapter 25, "CWM2_OLAP_PC_TRANSFORM"

= Chapter 26, "CWM2_OLAP_TABLE_MAP"

= Chapter 27, "CWM2_OLAP_VALIDATE"

= Chapter 28, "CWM_CLASSIFY"

13

Using the OLAP Catalog Metadata APIs

The OLAP Catalog PL/SQL packages provide stored procedures for creating,
dropping, and updating OLAP metadata. This chapter explains how to call these
procedures from within scripts. For complete syntax descriptions, refer to the
reference chapter for each package.

See Also:

» Chapter 5, "Creating OLAP Catalog Metadata" for an
introduction to the OLAP Catalog

= "OLAP Metadata Model" on page 4-8 for a description of the
logical entities in the OLAP Catalog

This chapter discusses the following topics:

OLAP Metadata Entities

Constructing a Dimension

Constructing a Cube

Mapping OLAP Metadata

Validating OLAP Metadata

Invoking the Procedures

Viewing OLAP Catalog Metadata

Example: Creating OLAP Metadata for a Dimension Table
Example: Creating OLAP Metadata for a Fact Table

Using the OLAP Catalog Metadata APIs 13-1

OLAP Metadata Entities

OLAP Metadata Entities

OLAP metadata entities are: dimensions, hierarchies, levels, level attributes,
dimension attributes, measures, cubes, and measure folders. A separate PL/SQL
package exists for each type of entity. The package provides procedures for creating,
dropping, locking, and specifying descriptions for entities of that type. For example,
to create a dimension, you would call CWWR2_OLAP_DI MENSI ON. CREATE_

DI MENSI CON, to create a level, you would call CWW2_OLAP_LEVEL. CREATE_LEVEL,

and so on.

Each entity of metadata is uniquely identified by its owner and its name.

Note: When you create an OLAP metadata entity, you are simply
adding a row to an OLAP Catalog table that identifies all the
entities of that type. Creating an entity does not fully define a
dimension or a cube, nor does it involve any mapping to
warehouse dimension tables or fact tables.

To fully construct a dimension or a cube, you must understand the hierarchical
relationships between the component metadata entities.

Constructing a Dimension

Creating a dimension entity is only the first step in constructing the OLAP metadata
for a dimension. Each dimension must have at least one level. More typically, it will
have multiple levels, hierarchies, and attributes. Table 13-1 shows the parent-child
relationships between the metadata components of a dimension.

Table 13-1 Hierarchical Relationships Between Components of a Dimension

Parent Entity Child Entity

dimension dimension attribute, hierarchy, level
dimension attribute level attribute

hierarchy level

level level attribute

13-2 Oracle9i OLAP User’s Guide

Constructing a Cube

Procedure: Construct an OLAP Dimension

Generally, you will create hierarchies and dimension attributes after creating the
dimension and before creating the dimension levels and level attributes. Once the
levels and level attributes are defined, you can map them to columns in one or more
warehouse dimension tables. The general steps are as follows:

1.
2.

Call procedures in CWWR2_OLAP_DI MENSI ON to create the dimension.

Call procedures in CWW2_OLAP_DI MENSI ON_ATTRI BUTE to create dimension
attributes.

Call procedures in CWWR2_OLAP_HI ERARCHY to define hierarchical relationships
for the dimension’s levels.

Call procedures in CWW2_OLAP_LEVEL to create levels and assign them to
hierarchies.

Call procedures in CWW2_OLAP_LEVEL _ATTRI BUTE to create level attributes
and assign them to dimension attributes.

Call procedures in CWW2_OLAP_TABLE_MAP to map the dimension’s levels and
level attributes to columns in a dimension table.

Constructing a Cube

Creating a cube entity is only the first step in constructing the OLAP metadata for a
cube. Each cube must have at least one dimension and at least one measure. More
typically, it will have multiple dimensions and multiple measures.

Procedure: Construct an OLAP Cube

The general steps for constructing a cube are as follows:

1.

Follow the steps in "Procedure: Construct an OLAP Dimension" on page 13-3 to
create the cube’s dimensions.

Call procedures in CWWV2_ OLAP_CUBE to create the cube and identify its
dimensions.

Call procedures in CWWR_ OLAP_MEASURE to create the cube’s measures.

Call procedures in CWW2_OLAP_TABLE_NAP to map the cube’s measures to
columns in a fact table and to map foreign key columns in the fact table to key
columns in the dimension tables.

Using the OLAP Catalog Metadata APIls 13-3

Mapping OLAP Metadata

Mapping OLAP Metadata

OLAP metadata mapping is the process of establishing the links between logical
metadata entities and the physical locations where the data is stored. Dimension
levels and level attributes map to columns in dimension tables. Measures map to
columns in fact tables. The mapping process also specifies the join relationships
between a fact table and its associated dimension tables.

Note: The dimension tables and fact tables may be implemented
as views. For example, the views you can generate using the CWWR _
OLAP_AW CREATE package may be the data source for OLAP
metadata. These views project an image of relational fact tables and
dimension tables over an analytic workspace, where the data
actually resides.

Mapping to Columns

Each dimension level maps to one or more columns in a dimension table. All the
columns of a multicolumn level must be mapped within the same table. All the
levels of a dimension may be mapped to columns in the same table (a traditional
star schema), or the levels may be mapped to columns in separate tables (snowflake
schema).

The CWW2_OLAP_TABLE_NMAP package contains the mapping procedures for CVWAV2
metadata. The MAP_DI MI'BL_HI ERLEVEL procedure maps a level of a given
hierarchy to columns in a dimension table. The MAP_DI MI'BL_LEVEL procedure
maps a level with no hierarchical context to columns in a dimension table.

Each level attribute maps to a single column in the same table as its associated level.
The MAP_DI MIBL_HI ERLEVELATTRmaps a level attribute of a given hierarchy to a
column in a dimension table. The MAP_DI MITBL_LEVELATTR maps a level attribute
with no hierarchical context to a column in a dimension table.

Each measure maps to a single column in a fact table. All the measures mapped
within the same fact table must share the same dimensionality. The MAP_FACTTBL _
MEASURE procedure maps a measure to a column in a fact table.

Joining Fact Tables with Dimension Tables

Once you have mapped the levels, level attributes, and measures, you can specify
the mapping of logical foreign key columns in the fact table to level key columns in
dimension tables.

13-4 Oracle9i OLAP User’s Guide

Validating OLAP Metadata

The CWW2_COLAP_TABLE_MAP. MAP_FACTTBL_LEVELKEY procedure defines the
join relationships between a cube and its dimensions. This procedure takes as input:
the cube name, the fact table name, a mapping string, and a storage type indicator
specifying how data is stored in the fact table.

The storage type indicator can have any of the following values:

« LOWEST LEVEL (Required in CWM supported but not required in CVWWVR).
A single fact table stores unsolved data for all the measures of a cube. If any of
the cube’s dimensions have more than one hierarchy, they must all have the
same lowest level. Each foreign key column in the fact table maps to a level key
column in a dimension table.

« ET (CWWR only).
Fact tables store completely solved data (with embedded totals) for specific
hierarchies of the cube’s dimensions. Typically, the data for each combination of
hierarchies is stored in a separate fact table. Each fact table must have the same
columns. Multiple hierarchies in dimensions do not have to share the same
lowest level.

An embedded total key and a grouping ID key (GID) in the fact table map to
corresponding columns that identify a dimension hierarchy in a solved
dimension table. The ET key identifies the lowest level value present in a row.
The GID identifies the hierarchy level associated with each row. For more
information, see "Grouping ID Column" on page 9-6.

=« ROLLED UP (CWWR only).
Same as for ET, but with key columns in the fact table for each level of each
dimension hierarchy. The presence of fully populated level keys in the fact table
facilitates aggregation at runtime.

Validating OLAP Metadata

To test the validity of OLAP metadata, use the VALI DATE_CUBE and VAL| DATE
DI MENSI ON procedures in the CWWR_CQLAP_VALI DATE package. The validation
process checks the structural integrity of the metadata and verifies that it is properly
mapped to columns in tables or views.

Important: The validation process ensures that mapping
information has been properly specified. It does not ensure that the
source tables and columns still exist.

Using the OLAP Catalog Metadata APIls 13-5

Validating OLAP Metadata

You can determine whether or not a cube is valid by checking the | NVALI D column
of the ALL_OLAP2_CUBES view. You can determine whether or not a dimension is
valid by checking the | NVALI D column of the ALL_OLAP2_DI MENSI ONS view.

Structural Validation

Structural validation ensures that cubes and dimensions have all their required
components parts.

Cubes

To be structurally valid, a cube must meet the following criteria:
« It must have at least one valid dimension.

« It must have at least one measure.

Dimensions
To be structurally valid, a dimension must meet the following criteria:

« It must have at least one level.

= It may have one or more hierarchies. Each hierarchy must have at least one
level.

= It may have one or more dimension attributes. Each dimension attribute must
have at least one level attribute.

Mapping Validation

Mapping validation ensures that the metadata has been properly mapped to
columns in tables or views.

Cubes

To be valid, a cube’s mapping must meet the following criteria:
= It must be mapped to one or more fact tables.

= All of the cube’s measures must be mapped to columns in a fact table. If there
are multiple fact tables, all the measures must be in each one.

= Every dimension/hierarchy combination must be mapped to one of the fact
tables.

13-6 Oracle9i OLAP User’s Guide

Invoking the Procedures

Dimensions
To be valid, a dimension’s mapping must meet the following criteria:

= Alllevels must be mapped to columns in a dimension table.

= Level attributes must be mapped to columns in the same table as the
corresponding levels.

Invoking the Procedures

When using the OLAP Catalog write API, you should be aware of logic and
conventions that are common to all the CWM2 procedures.

Security Checks and Error Conditions

Each CWM2 procedure first checks the calling user’s security privileges. The calling
user must be the entity owner and must have the OLAP_DBA role. If the calling user
does not meet the security requirements, the procedure fails with an exception. For
example, if your identity is j smi t h, you cannot successfully execute CWWR2_OLAP_
HI ERARCHY. DROP_HI ERARCHY for a hierarchy owned by j j ones.

After verifying the security requirements, each procedure checks for the existence of
the entity and of its parent entities. All procedures, except CREATE procedures,
return an error if the entity does not already exist. For example, if you call CWWR_
OLAP_LEVEL. SET_DESCRI PTI ON, and the level does not already exist, the
procedure will fail. Similarly, if you call CWWR2_ OLAP_MEASURE. SET_

DESCRI PTI ONand the measure exists but the parent cube does not exist, then the
procedure will fail.

Case Requirements for Parameters

You can specify arguments to CWM2 procedures in lower case, upper case, or mixed
case.

If the argument is a metadata entity name (for example, di mensi on_narmne) or a
value that will be used in further processing by other procedures (for example, the
sol ved_code of a hierarchy), the procedure converts the argument to upper case.
For all other arguments, the case that you specify is retained.

Creating and Saving Metadata

None of the procedures that create, map, and validate OLAP metadata include a
COMMIT. Your script should execute all the statements that create and map new

Using the OLAP Catalog Metadata APIs 13-7

Viewing OLAP Catalog Metadata

metadata, then validate the metadata by calling procedures in CWW2_CLAP_
VALI DATE, and finally do a COMMIT to commit the new metadata to the database.

However, if the metadata is specifically for the OLAPI API, you must refresh the
OLAP API Metadata Reader tables after validating the metadata. This procedure,
CWW2_OLAP_METADATA_REFRESH. MR_REFRESH, does include a COMMIT.

Viewing OLAP Catalog Metadata

A set of views, identified by the ALL_CLAP2 prefix, presents the metadata in the
OLAP Catalog. The metadata may have been created with the CWW2 PL/SQL
packages or with Enterprise Manager. The ALL_COLAP2 views are automatically
populated whenever changes are made to the metadata.

A second set of views, identified by the MRV_OLAP prefix, also presents OLAP
Catalog metadata. However, these views are structured specifically to support fast
querying by the OLAP API's Metadata Reader. These views must be explicitly
refreshed whenever changes are made to the metadata.

See Also:

= Chapter 14, "Viewing OLAP Catalog Metadata" for more
information on the ALL_OLAP2 views.

= Chapter 24, "CWM2_OLAP_METADATA_REFRESH" for more
information on refreshing metadata tables for the OLAP APL

Example: Creating OLAP Metadata for a Dimension Table

Example 13-1 Creating Metadata for a Dimension Table

In the Sales History sample schema, PRODUCTS is a dimension table with the
following columns:

Column Name Data Type
PRCD_I D NUMBER
PROD_NANE VARCHAR?
PROD_DESC VARCHAR2
PROD_SUBCATEGCORY VARCHAR2
PROD_SUBCAT_DESC VARCHAR2

13-8 Oracle9i OLAP User’s Guide

Example: Creating OLAP Metadata for a Dimension Table

Column Name Data Type
PRCD CATEGORY VARCHAR?
PROD_CAT_DESC VARCHAR2
PROD_WEI GHT_CLASS NUMBER
PRCD_UNI T_OF MEASURE VARCHAR2
PROD_PACK_SI ZE VARCHAR2
SUPPLI ER_I D NUMBER
PRCD_STATUS VARCHAR2
PROD LI ST_PRI CE NUMBER
PROD M N_PRI CE NUMBER
PROD_TOTAL VARCHAR2

The following statements, excerpted from a PL/SQL script, create a logical CVWW2
dimension, PRODUCT DI M for the PRODUCTS dimension table.

Create the PRODUCT Dinension
cwr2_ol ap_di mensi on. creat e_di nension(’ SH, 'PRODUCT_DIM, ’'Product’,
"Products’, 'Product Dinension’, 'Product Dinension Values');

--- Create Dimension Attributes ---

cwr2_ol ap_di mensi on_attribute.create_dinmension_attribute(’ SH, 'PRODUCT_DI M,
"Long Description’, 'Long Descriptions’,
"Long Desc’, 'Long Product Descriptions', true);

cwr2_ol ap_di nmensi on_attribute.create_dinension_attribute(’ SH, 'PRODUCT_ DIM,
"PROD_NAME DIM, ' Product Nane',
"Prod Nane’, 'Product Nane');

--- Create STANDARD H erarchy ---

cwr2_ol ap_hi erarchy. create_hierarchy(’ SH, 'PRODUCT_DIM, ' STANDARD ,
"Standard’, 'Std Product’, 'Standard Product Herarchy’,
" Unsol ved Level -Based');

Create Levels ---

cwr2_ol ap_l evel .create_level (" SH, 'PRODUCT_DIM, 'L4",
"Product 1D, ’'Product Identifiers’,
"Prod Key',' Product Key');

cwr2_ol ap_l evel .create_level (" SH, 'PRODUCT DIM, 'L3",

Using the OLAP Catalog Metadata APIs 13-9

Example: Creating OLAP Metadata for a Dimension Table

"Product Sub-Category’,’Product Sub-Categories’,
"Prod Sub-Category’, 'Sub-Categories of Products’);
cwr2_ol ap_l evel .create_level (" SH, 'PRODUCT DIM, 'L2',
"Product Category', 'Product Categories’,
"Prod Category’, 'Categories of Products’);
cwn2_ol ap_l evel .create_level (" SH, 'PRODUCT_DIM, 'L1',
"Total Product’, 'Total Products’,
"Total Prod', 'Total Product’);

--- Create Level Attributes ---
cwr2_ol ap_level _attribute.create |evel attribute(’SH, 'PRODUCT DM,
"Long Description’, 'L4", 'Long Description’,
" PRODUCT_LABEL’, 'L4 Long Desc’,
'Long Label s for PRODUCT |dentifiers’, TRUE);
cwr2_ol ap_level _attribute.create |evel attribute(’SH, 'PRODUCT DM,
"Long Description’, 'L3", 'Long Description’,
' SUBCATEGORY_LABEL', ' L3 Long Desc’,
"Long Labels for PRODUCT Sub-Categories’, TRUE);
cwn@_ol ap_l evel _attribute.create_|level _attribute(’ SH, 'PRODUCT_DM,
"Long Description’, 'L2', 'Long Description’,
" CATEGORY_LABEL’, 'L2 Long Desc’,
"Long Labels for PRODUCT Categories’, TRUE);
cwn@_ol ap_l evel _attribute.create_|level _attribute(’ SH, 'PRODUCT_DM,
"PROD_NAME DM, 'L4', 'PROD_NAME LEV,
"Product Nane', ’'Product Name');

--- Add levels to hierarchies ---
cwn?_ol ap_l evel . add_| evel _to_hierarchy(’ SH, ' PRODUCT_DIM, ' STANDARD ,

L4, ' L3);

cwr2_ol ap_l evel . add_| evel _to_hierarchy(’ SH, 'PRODUCT_DI M, ' STANDARD ,
L3, 'L2");

cwr2_ol ap_l evel . add_| evel _to_hierarchy(’ SH, 'PRODUCT_DI M, ' STANDARD ,
L2, 'L1);

cwn?_ol ap_l evel . add_| evel _to_hierarchy(’ SH, 'PRODUCT_DIM, ' STANDARD ,
L)

--- Create nmappings ---

cwn2_ol ap_t abl e_map. Map_Di niTbl _Hi er Level (' SH, ' PRODUCT_DIM ,
' STANDARD , ' L4',
"SH, 'PRODUCTS', 'PROD ID);

cwn2_ol ap_tabl e_map. Map_Di niTbl _Hi er Level Attr(' SH, 'PRODUCT_DIM,
"Long Description', 'STANDARD , 'L4', 'Long Description', 'SH,
" PRODUCTS , ' PROD_DESC);

cwr2_ol ap_t abl e_map. Map_Di niTbl _Hi er Level Attr(' SH, 'PRCDUCT_DIM,
"PROD_NAME_DIM, 'STANDARD , 'L4', 'PROD_NAME LEV', 'SH,

13-10 Oracle9i OLAP User’s Guide

Example: Creating OLAP Metadata for a Fact Table

" PRODUCTS', ' PROD_NAME) ;
cwr2_ol ap_tabl e_nmap. Map_Di niTbl _Hi erLevel (' SH, ' PRODUCT_DIM,
" STANDARD , 'L3','SH, 'PRODUCTS, ' PROD_SUBCATEGORY');
cwr2_ol ap_tabl e_map. Map_Di niTbl _Hi er Level Attr(’ SH, 'PRCDUCT DIM,
"Long Description', 'STANDARD , 'L3', 'Long Description’, 'SH,
" PRODUCTS', ' PROD_SUBCAT_DESC);
cwr2_ol ap_t abl e_map. Map_Di niTbl _Hi er Level (' SH, ' PRODUCT_D M,
" STANDARD , 'L2','SH, 'PRODUCTS, ' PROD CATEGCRY');
cwr2_ol ap_tabl e_map. Map_Di niTbl _Hi er Level Attr(’ SH, 'PRCDUCT DIM,
"Long Description’, 'STANDARD , 'L2', 'Long Description’, 'SH,
" PRODUCTS' , ' PROD_CAT_DESC);
cwn2_ol ap_t abl e_map. Map_Di niTbl _Hi er Level (' SH, ' PRODUCT_DIM ,
"STANDARD , 'L1',"SH, 'PRODUCTS, 'PROD TOTAL');

Example: Creating OLAP Metadata for a Fact Table

In the Sales History sample schema, COSTS is a fact table with the following

columns.I

Column Name Data Type
PROD_I D NUMBER
TIME_ID DATE
UNI T_COST NUMBER
UNI T_PRI CE NUMBER

The following statements create a logical CWWR cube object, ANALYTI C_CUBE, for
the COSTS fact table. The dimensions of the cube are: PRODUCT_DI M shown in
"Example: Creating OLAP Metadata for a Dimension Table" on page 13-8, and

TI ME_DI M a time dimension mapped to a table Tl ME.

Create the ANALYTI C_CUBE Cube
cwr2_ol ap_cube. create_cube(’ SH, 'ANALYTIC CUBE , 'Analytics',
"Anal ytic Cube’,’ Unit Cost and Price Analysis');

Add the dinensions to the cube
cwr2_ol ap_cube. add_di nensi on_to_cube(’ SH, "ANALYTI C_CUBE' ,
"SH, 'TINEDM);
cwr2_ol ap_cube. add_di nensi on_to_cube(’ SH, "ANALYTIC CUBE ,
"SH, 'PRODUCT DIM);

Create the measures

Using the OLAP Catalog Metadata APls 13-11

Example: Creating OLAP Metadata for a Fact Table

cwr2_ol ap_neasure. create_neasure(’ SH, " ANALYTIC CUBE', 'UNIT_COST',
"Unit Cost’,’Unit Cost’, 'Unit Cost’);

cwr2_ol ap_neasure. create_neasure(’' SH, 'ANALYTIC CUBE', 'UNIT_PRICE,
"Unit Price’,"Unit Price’, "Unit Price’);

Create the mappings
cwr2_ol ap_t abl e_map. Map_Fact Tbl _Level Key
("SH, "ANALYTIC CUBE ,'SH, 'COSTS', 'LOWEST LEVEL',
" DI M SH. PRODUCTS/ H ER: STANDARD/ LVL: L4/ COL: PROD I D,
DI M SH. TI ME/ H ER: CALENDAR/ LVL: L3/ COL: MONTH, ') ;
cwr2_ol ap_t abl e_map. Map_Fact Thl _Measure
("SH, "ANALYTIC CUBE'," UNIT_COST', 'SH, 'COSTS, 'UNIT_COST',
' DI M SH. PRODUCTS/ Hl ER: STANDARDY LVL: L4/ COL: PROD_I D
DI M SH. TI ME/ H ER: CALENDAR/ LVL: L3/ COL: MONTH, ') ;
cwr2_ol ap_tabl e_map. Map_Fact Thl _Measure
("SH, "ANALYTIC CUBE',”UNIT PRICE, 'SH, 'COSTS', "UNT_PRICE,
" DI M SH. PRODUCTS/ Hl ER: STANDARDY LVL: L4/ COL: PROD I D
DI M SH. TI ME/ H ER: CALENDAR/ LVL: L3/ COL: MONTH, ') ;

13-12 Oracle9i OLAP User’s Guide

14

Viewing OLAP Catalog Metadata

This chapter describes the OLAP Catalog metadata views. All OLAP metadata,
whether created with the CWWR PL/SQL packages or with Enterprise Manager, is
presented in these views.

See Also: Chapter 13, "Using the OLAP Catalog Metadata APIs".

Note: A second set of views, called the OLAP API Metadata
Reader views, presents much of the same information as the OLAP
Catalog views. The Metadata Reader views are structured to
facilitate fast queries by the OLAP API. See Chapter 24 for more
information.

This chapter discusses the following topics:
» Access to OLAP Catalog Views
= Views of the Dimensional Model

= Views of Mapping Information

Viewing OLAP Catalog Metadata 14-1

Access to OLAP Catalog Views

Access to OLAP Catalog Views
The OLAP Catalog read API consists of two sets of corresponding views:

= ALL_ views displaying all valid OLAP metadata accessible to the current user.

= DBA_views displaying all OLAP metadata (both valid and invalid) in the entire
database. DBA_ views are intended only for administrators.

Note: The OLAP Catalog tables are owned by OLAPSYS. To create
OLAP metadata in these tables, the user must have the OLAP_DBA
role.

The columns of the ALL_ and DBA _ views are identical. Only the ALL _ views are
listed in this chapter.

14-2 Oracle9i OLAP User’s Guide

Views of the Dimensional Model

Views of the Dimensional Model

The following views show the basic dimensional model of OLAP metadata.

For more information on the logical model, see Chapter 4, "Designing Your

Database for OLAP".

Table 14-1 OLAP Catalog Dimensional Model Views

View Name Synonym

Description

ALL_OLAP2_CUBES
ALL_OLAP2_CUBE_MEASURES
ALL_OLAP2_CUBE_DI M USES

ALL_OLAP2_CUBE_MEAS DI M USES

ALL_OLAP2_Di MENSI ONS
ALL_OLAP2_DI M _HI ERARCHI ES
ALL_OLAP2_DI M LEVELS
ALL_OLAP2_DI M ATTRI BUTES

ALL_OLAP2_DI M LEVEL_ATTRI BUTES
ALL_OLAP2_DI M ATTR USES

ALL_OLAP2_DI M H ER_LEVEL_USES
ALL_OLAP2_CATALOGS

ALL_OLAP2_CATALOG_ENTI TY_USES
ALL_OLAP2_ENTI TY_DESC_USES

Lists all cubes in an Oracle instance.
Lists the measures within each cube.
Lists the dimensions within each cube.

Shows how each measure is aggregated along each of its
dimensions.

Lists all OLAP dimensions in an Oracle instance.
Lists the hierarchies within each dimension.

Lists the levels within each dimension.

Lists the dimension attributes within each dimension.
Lists the level attributes within each level.

Shows how level attributes are associated with each
dimension attribute.

Show how levels are ordered within each hierarchy.

List all measure folders (catalogs) within the Oracle
instance.

Lists the measures within each measure folder.

Lists the reserved attributes that have application-specific
meanings. Examples are dimension attributes that are
used for long and short descriptions and time-series
calculations (end date, time span, period ago, and so on).

Viewing OLAP Catalog Metadata 14-3

Views of Mapping Information

Views of Mapping Information

The following views show how the basic dimensional model is mapped to relational
tables or views.

Table 14-2 OLAP Catalog Mapping Views

View Synonym Name Description

ALL_OLAP2_CUBE_MEASURE_NAPS Shows the mapping of each measure to a column.
ALL_CLAP2_DI M LEVEL_ATTR_NAPS Shows the mapping of each level attribute to a column.
ALL OLAP2 LEVEL KEY COLUMN USES Shows the mapping of each level to a unique key column.
ALL OLAP2 JO N _KEY_COLUMN_USES Shows the joins between two levels in a hierarchy.

ALL_OLAP2_H ER_CUSTOM SORT Shows the default sort order for level columns within
hierarchies.

ALL_OLAP2_FACT_TABLE_G D Shows the Grouping ID column for each hierarchy in each
fact table.

ALL OLAP2 FACT_ LEVEL_ USES Shows the joins between dimension tables and fact tables in a

star or snowflake schema.

14-4 Oracle9i OLAP User’s Guide

ALL_OLAP2_CUBE_MEASURES

ALL_OLAP2_CUBES

ALL_QOLAP2_CUBES lists all cubes in an Oracle instance.

Column Data Type NULL Description

OMNNER VARCHAR2(30) NOT NULL Owner of the cube.

CUBE_NAME VARCHAR2(30) NOT NULL Name of the cube.

I NVALI D VARCHAR2(2) NOT NULL Whether or not this cube is in an invalid state. See "Validating
OLAP Metadata" on page 13-5.

DI SPLAY_NAME VARCHAR2(30) Display name for the cube.

DESCRI PTI ON VARCHAR2(2000) Description of the cube.

MV_SUMVARYCCDE VARCHAR2(2) If this cube has an associated materialized view, the MV

summary code specifies whether it is in Grouping Set
(gr oupi ngset) or Rolled Up (r ol | up) form.

See Chapter 10, "Creating Materialized Views for the
OLAP API".

ALL_OLAP2_CUBE_MEASURES

ALL_OLAP2_CUBE_MEASURES lists the measures within each cube.

Column Data Type NULL Description

OMNER VARCHAR2(30) NOT NULL Owner of the cube that contains the measure.
CUBE_NAME VARCHAR2(30) NOT NULL Name of the cube that contains the measure.
MEASURE_NAME VARCHAR2(30) NOT NULL Name of the measure.

DI SPLAY_NAVE VARCHAR2(30) Display name for the measure.

DESCRI PTI ON VARCHAR2(2000) Description of the measure.

Viewing OLAP Catalog Metadata 14-5

ALL_OLAP2_CUBE_DIM_USES

ALL_OLAP2_CUBE_DIM_USES
ALL_COLAP2_CUBE_DI M USES lists the dimensions within each cube.

A dimension may be associated more than once with the same cube, but each
association is specified in a separate row, under its own unique dimension alias.

Column Data Type NULL Description

CUBE_DI MENSI ON_USE_| D NUMBER NOT NULL ID of the association between a cube and a dimension.

OMNER VARCHAR2(30) NOT NULL Owner of the cube.

CUBE_NAME VARCHAR2(30) NOT NULL Name of the cube.

DI MENSI ON_OMNER VARCHAR2(30) NOT NULL Owner of the dimension.

DI MENSI ON_NAME VARCHAR2(30) NOT NULL Name of the dimension.

DI MENSI ON_ALI AS VARCHAR2(30) Alias of the dimension, to provide unique identity of
dimension use within the cube.

DEFAULT_CALC_ VARCHAR2(30) The default hierarchy to be used for drilling up or down

HI ERARCHY_NAME within the dimension.

DEPENDENT_ON_DI M_USE_ NUMBER ID of the cube/dimension association on which this

1D cube/dimension association depends.

ALL_OLAP2_CUBE_MEAS_DIM_USES

ALL_OLAP2_CUBE_MEAS_DI M_USES shows how each measure is aggregated along
each of its dimensions. The default aggregation method is addition.

Column Data Type NULL Description

OWNER VARCHAR2(30) NOT NULL Owner of the cube that contains this measure.
CUBE_NAME VARCHAR2(30) NOT NULL Name of the cube that contain this measure.
MEASURE_NAME VARCHAR2(30) NOT NULL Name of the measure.

DI MENSI ON_OMNER VARCHAR2(30) NOT NULL Owner of a dimension associated with this measure.

DI MENSI ON_NAME VARCHAR2(30) NOT NULL Name of the dimension.

DI MENSI ON_ALI AS VARCHAR2(30) Alias of the dimension.

DEFAULT_AGGR NUMBER The default aggregation method used to aggregate this measure’s
FUNCTI ON_USE_I D data over this dimension. If this column is null, the aggregation

method is addition.

14-6 Oracle9i OLAP User’s Guide

ALL_OLAP2_DIMENSIONS

ALL_OLAP2_DIMENSIONS
ALL_COLAP2_DI MENSI ONS lists all the OLAP dimensions in the Oracle instance.

OLAP dimensions created with the CWWR APIs have no association with database
dimension objects. OLAP dimensions created in Enterprise Manager are based on
database dimension objects.

Column Data Type NULL Description

OMNNER VARCHAR2(30) NOT NULL Owner of the dimension.

DI MENSI ON_NAME VARCHAR2(30) NOT NULL Name of the dimension.

PLURAL _NAVE VARCHAR2(30) Plural name for the dimension. Used for display.

DI SPLAY_NAVE VARCHAR2(30) Display name for the dimension.

DESCRI PTI ON VARCHAR2(2000) Description of the dimension.

DEFAULT_DI SPLAY_ VARCHAR2(30) NOT NULL Default display hierarchy for the dimension.

HI ERARCHY

I NVALI D VARCHAR2(1) NOT NULL Whether or not the dimension is valid. See "Validating OLAP
Metadata" on page 13-5

DI MENSI ON_TYPE VARCHAR2(10) Not used.

Viewing OLAP Catalog Metadata 14-7

ALL_OLAP2_DIM_HIERARCHIES

ALL_OLAP2_DIM_HIERARCHIES

ALL_COLAP2_DI M HI ERARCHI ES lists the hierarchies within each dimension.

Column Data Type NULL Description

OMNER VARCHAR2(30) NOT NULL Owner of the dimension.

DI MENSI ON_NAME VARCHAR2(30) NOT NULL Name of the dimension.

HI ERARCHY_NAME VARCHAR2(30) NOT NULL Name of the hierarchy.

DI SPLAY_NAVE VARCHAR2(30) Display name for the hierarchy.

DESCRI PTI ON VARCHAR2(2000) Description of the hierarchy.

SOLVED_CODE VARCHAR2(2) NOT NULL The solved code may be one of the following;:

UNSOLVED LEVEL- BASED, for a hierarchy that contains no
embedded totals and is stored in a level-based dimension
table.

SOLVED LEVEL- BASED, for a hierarchy that contains
embedded totals, has a grouping ID, and is stored in a
level-based dimension table.

SOLVED VALUE- BASED, for a hierarchy that contains
embedded totals for all level combinations and is stored
in a parent-child dimension table.

For information about mapping hierarchies with
different solved codes, see "Joining Fact Tables with
Dimension Tables" on page 13-4.

ALL_OLAP2_DIM_LEVELS

ALL _QOLAP2_DI M LEVELS lists the levels within each dimension.

Column Data Type NULL Description

OWNER VARCHAR2(30) NOT NULL Owner of the dimension containing this level.

DI MENSI ON_NAME VARCHAR2(30) NOT NULL Name of the dimension containing this level.
LEVEL_NAME VARCHAR2(30) NOT NULL Name of the level.

DI SPLAY_NAME VARCHAR2(30) Display name for the level.

DESCRI PTI ON VARCHAR2(2000) Description of the level.

LEVEL_TABLE_OMER VARCHAR2(30) NOT NULL Owner of the dimension table that contains the columns

14-8 Oracle9i OLAP User’s Guide

for this level.

ALL_OLAP2_DIM_LEVEL_ATTRIBUTES

Column Data Type NULL Description
LEVEL_TABLE_NAME VARCHAR2(30) NOT NULL Name of the dimension table that contains the columns for
this level.

ALL_OLAP2_DIM_ATTRIBUTES

ALL_OLAP2_DI M_ATTRI BUTES lists the dimension attributes within each

dimension.
Column Data Type NULL Description
OMNNER VARCHAR2(30) NOT NULL Owner of the dimension.
DI MENSI ON_NAME VARCHAR2(30) NOT NULL Name of the dimension.
ATTRI BUTE_NAME VARCHAR2(30) NOT NULL Name of the dimension attribute.
DI SPLAY_NAVE VARCHAR2(30) Display name for the dimension attribute.
DESCRI PTI ON VARCHAR2(2000) Description of the dimension attribute.
DESC | D NUMBER If the attribute is reserved, its type is listed in this column.

Examples of reserved dimension attributes are long and short
descriptions and time-related attributes, such as end date, time
span, and period ago.

ALL_OLAP2_DIM_LEVEL_ATTRIBUTES

ALL_OLAP2_DI M LEVEL_ATTRI BUTES lists the level attributes within each level.

Column Data Type NULL Description

OMNER VARCHAR2(30) NOT NULL Owner of the dimension containing the level.

DI MENSI ON_NAME VARCHAR2(30) NOT NULL Name of the dimension containing the level.

ATTRI BUTE_NAME VARCHAR2(30) Name of the level attribute. If no attribute name is specified, the
column name is used.

DI SPLAY_NAME VARCHAR2(30) Display name for the level attribute.

DESCRI PTI ON VARCHAR2(2000) Description of the level attribute.

DETERM NED_BY_ VARCHAR2(30) NOT NULL Name of the level.

LEVEL_NAME

Viewing OLAP Catalog Metadata 14-9

ALL_OLAP2_DIM_ATTR_USES

ALL_OLAP2_DIM_ATTR_USES

ALL _OLAP2_DI M _ATTR_USES shows how level attributes are associated with each
dimension attribute.

The same level attribute can be included in more than one dimension attribute.

Column Data Type NULL Description

OMNER VARCHAR2(30) NOT NULL Owner of the dimension.

DI MENSI ON_NAME VARCHAR2(30) NOT NULL Name of the dimension.

DI M_ATTRI BUTE_ VARCHAR2(30) NOT NULL Name of the dimension attribute.

NAVE

LEVEL _NAME VARCHAR2(30) NOT NULL Name of a level within the dimension.

LVL_ATTRI BUTE_ VARCHAR2(30) NOT NULL Name of an attribute for this level. This level attribute is
NAME included in the dimension attribute.

ALL_OLAP2_DIM_HIER_LEVEL_USES

ALL_OLAP2 DI M Hl ER_LEVEL_USES shows how levels are ordered within each

hierarchy.
Within separate hierarchies, the same parent level may be hierarchically related to a
different child level.

Column Data Type NULL Description

OMNER VARCHAR2(30) NOT NULL Owner of the dimension.

DI MENSI ON_NAME VARCHAR2(30) NOT NULL Name of the dimension.

HI ERARCHY_NAME VARCHAR2(30) NOT NULL Name of the hierarchy.

PARENT_LEVEL_NAME VARCHAR2(30) NOT NULL Name of the parent level.

CHI LD LEVEL_NAME VARCHAR2(30) NOT NULL Name of the child level.

PCSI TI ON NUMBER NOT NULL Position of this parent-child relationship within the hierarchy,

with position 1 being the most detailed.

14-10 Oracle9i OLAP User’s Guide

ALL_OLAP2_ENTITY_DESC_USES

ALL_OLAP2_CATALOGS

ALL_CLAP2_CATALCGS lists all the measure folders (catalogs) within the Oracle

instance.
Column Data Type NULL Description
CATALOG I D NUVBER NOT NULL ID of the measure folder.
CATALOG_NAME VARCHAR2(30) NOT NULL Name of the measure folder.
PARENT_CATALOG | D NUVBER ID of the parent measure folder. This column is null for
measure folders at the root of the measure folder tree.
DESCRI PTI ON VARCHAR2(2000) Description of the measure folder.

ALL_OLAP2_CATALOG_ENTITY_USES

ALL_ OLAP2_CATALOG ENTI TY_USES lists the measures within each measure

folder.
Column Data Type NULL Description
CATALOG I D NUVBER NOT NULL ID of the measure folder.
ENTI TY_OANER VARCHAR2(30) NOT NULL Owner of the measure’s cube.
ENTI TY_NAME VARCHAR2(30) NOT NULL Name of the measure’s cube.
CHI LD_ENTI TY_NAME VARCHAR2(30) NOT NULL Name of the measure in the measure folder.

ALL_OLAP2_ENTITY_DESC_USES

ALL_OLAP2_ENTI TY_DESC_ USES lists the reserved attributes and shows whether
or not dimensions are time dimensions.

Column Data Type NULL Description

DESCRI PTOR_| D NUMBER NOT NULL Name of the reserved attribute or dimension type.

The reserved dimension attributes are listed in Table 19-1,
" Reserved Dimension Attributes" on page 19-2.

The reserved level attributes are listed in Table 22-1, " Reserved
Level Attributes" on page 22-2.

ENTI TY_OMER VARCHAR2(30) NOT NULL Owner of the metadata entity.
ENTI TY_NAME VARCHAR2(30) NOT NULL Name of the metadata entity.

Viewing OLAP Catalog Metadata 14-11

ALL_OLAP2_CUBE_MEASURE_MAPS

Column Data Type NULL Description

CHI LD_ENTI TY_NAME VARCHAR2(30) Name of the child entity (if applicable). A dimension attribute is
a child entity of a dimension. A level attribute is a child entity of
a dimension attribute.

SECONDARY_CHI LD VARCHAR2(30) Name of the secondary child entity name (if applicable). A

ENTI TY_NAMVE dimension attribute is a child entity of a dimension. A level
attribute is a child entity of a dimension attribute. A level
attribute could be the secondary child entity of a dimension.

ALL_OLAP2_CUBE_MEASURE_MAPS

ALL_CLAP2_CUBE_MEASURE_MAPS shows the mapping of each measure to a

column.
Column Data Type NULL Description
OMNER VARCHAR2(30) NOT NULL Owner of the cube.
CUBE_NAME VARCHAR2(30) NOT NULL Name of the cube.
MEASURE_NAME VARCHAR2(30) NOT NULL Name of the measure contained in this cube.
DI M_H ER_COVBO_| D NUMBER NOT NULL ID of the association between this measure and one combination

of its dimension hierarchies.
FACT_TABLE_OMER VARCHAR2(30) NOT NULL Owner of the fact table.
FACT_TABLE_NAME VARCHAR2(30) NOT NULL Name of the fact table.

COLUWN_NAME VARCHAR2(30) NOT NULL Name of the column in the fact table where this measure’s data is
stored.

ALL_OLAP2_DIM_LEVEL_ATTR_MAPS

ALL_OLAP2_DI M LEVEL_ATTR_MAPS shows the mapping of each level attribute
to a column.

The mapping of level attributes to levels is dependent on hierarchy. The same level
may have different attributes when it is used in different hierarchies.

Column Data Type NULL Description

OMNER VARCHAR2(30) NOT NULL Owner of the dimension.

DI MENSI ON_NAME VARCHAR2(30) NOT NULL Name of the dimension.

HI ERARCHY_NAME VARCHAR2(30) Name of the hierarchy containing this level.

14-12 Oracle9i OLAP User’s Guide

ALL_OLAP2_LEVEL_KEY_COLUMN_USES

Column Data Type NULL Description
ATTRI BUTE_NAME VARCHAR2(30) Name of a dimension attribute grouping containing this level
attribute.

LVL_ATTRI BUTE_

NAMVE
LEVEL _NAME
TABLE_OWNER

TABLE_NAME

COLUMN_NAVE
DTYPE

VARCHAR2(30) NOT NULL Name of the level attribute, or name of the column if the level
attribute name is not specified.

VARCHAR2(30) NOT NULL Name of the level.

VARCHAR2(30) NOT NULL Owner of the dimension table containing the level and level
attribute.

VARCHAR2(30) NOT NULL Name of the dimension table containing the level and level
attribute columns.

VARCHAR2(30) NOT NULL Name of the column containing the level attribute.
VARCHAR2(10) NOT NULL Data type of the column containing the level attribute.

ALL_OLAP2_LEVEL_KEY_COLUMN_USES

ALL_CLAP2_LEVEL_KEY_COLUMN_USES shows the mapping of each level to a
unique key column.

If the level is mapped to more than one column, each column mapping is
represented in a separate row in the view.

Column Data Type NULL Description

OMNNER VARCHAR2(30) NOT NULL Owner of the dimension.

DI MENSI ON_NAME VARCHAR2(30) NOT NULL Name of the dimension.

HI ERARCHY_NAME VARCHAR2(30) Name of the hierarchy that includes this level.

CH LD_LEVEL_NAME VARCHAR2(30) NOT NULL Name of the level.

TABLE_OWNER VARCHAR2(30) NOT NULL Owner of the dimension table.

TABLE_NAME VARCHAR2(30) NOT NULL Name of the dimension table.

COLUMN_NAME VARCHAR2(30) NOT NULL Name of the column that stores CHI LD_LEVEL _NAME.

PCSI TI ON NUMBER Position of the column within the key. Applies to multi-column

keys only (where the level is mapped to more than one column).

Viewing OLAP Catalog Metadata 14-13

ALL_OLAP2_JOIN_KEY_COLUMN_USES

ALL_OLAP2_JOIN_KEY_COLUMN_USES

ALL_CLAP2_JO N_KEY_COLUMN_USES shows the joins between two levels in a
hierarchy. The joins are between dimension tables in a snowflake schema, and
between level columns in a star schema.

If the level is mapped to more than one column, each column mapping is
represented in a separate row in the view.

Column Data Type NULL Description

OMNER VARCHAR2(30) NOT NULL Owner of the dimension.

DI MENSI ON_NAME VARCHAR2(30) NOT NULL Name of the dimension.

HI ERARCHY_NAME VARCHAR2(30) NOT NULL Name of the hierarchy.

CHI LD_LEVEL_NAME VARCHARZ2(30) NOT NULL Child level in the hierarchy.

TABLE_OMWNER VARCHAR2(30) NOT NULL Owner of the dimension table.

TABLE_NAME VARCHAR2(30) NOT NULL Name of the dimension table.

COLUWN_NAME VARCHAR2(30) NOT NULL Name of the child level column in the dimension table. In a star

schema, this is the column associated with CHI LD_LEVEL _
NAME. In a snowflake schema, this is the parent column of
CHI LD_LEVEL_NAME in the same dimension table.

PCSI TI ON NUMBER Position of column within the key. Applies to multi-column
keys only (where the level is mapped to more than one column).

JO N_KEY_TYPE VARCHAR2(30) NOT NULL The key is of type SNOANFLAKE if the join key is a logical foreign
key. The key is of type STARIf the join key refers to a column
within the same table.

ALL_OLAP2_HIER_CUSTOM_SORT

ALL OLAP2 HI ER_CUSTOM SORT shows the sort order for level columns within
hierarchies. Custom sorting information is optional.

Custom sorting information specifies how to sort the members of a hierarchy based
on columns in the dimension table. The specific columns in the dimension tables
may be the same as the key columns or may be related attribute columns.

Custom sorting can specify that the column be sorted in ascending or descending
order, with nulls first or nulls last. Custom sorting can be applied at multiple levels
of a dimension.

14-14 Oracle9i OLAP User’s Guide

ALL_OLAP2_FACT_TABLE_GID

Column Data Type NULL Description

OMNNER VARCHAR2(30) NOT NULL Owner of the dimension.

DI MENSI ON_NAME VARCHAR2(30) NOT NULL Name of the dimension.

HI ERARCHY_NAME VARCHAR2(30) NOT NULL Name of the hierarchy.

TABLE_OWNER VARCHAR2(30) NOT NULL Owner of the dimension table.

TABLE_NAME VARCHAR2(30) NOT NULL Name of the dimension table.

COLUMN_NAME VARCHAR2(30) NOT NULL Name of the column to be sorted.

PCSI TI ON NUMBER NOT NULL Represents the position within a multi-column SORT _
PGsI Tl ON. In most cases, a single column represents SORT_
POSI Tl ON, and the value of POSI TI ONis 1.

SORT_PCSI TI ON NUMBER NOT NULL Position within the sort order of the level to be sorted.

SORT_ORDER VARCHAR2(4) NOT NULL Sort order. Can be either Ascendi ng or Descendi ng.

NULL_ORDER VARCHAR2(5) NOT NULL Where to insert null values in the sort order. Can be either

NulI's First orNulls Last.

ALL_OLAP2_FACT_TABLE_GID

ALL_CLAP2_FACT_TABLE G Dshows the Grouping ID column for each hierarchy
in each fact table. For more information, see "Grouping ID Column" on page 9-6.

Column Data Type NULL Description

OMNER VARCHAR2(30) NOT NULL Owner of the cube.

CUBE_NAME VARCHAR2(30) NOT NULL Name of the cube.

DI MENSI ON_OWNER VARCHAR2(30) NOT NULL Owner of the dimension.

DI MENSI ON_NAME VARCHAR2(30) NOT NULL Name of the dimension

HI ERARCHY_NAME VARCHAR2(30) NOT NULL Name of the hierarchy.

DI M_H ER_COVBO I D NUVBER NOT NULL ID of the dimension-hierarchy association.
FACT_TABLE_OWNER VARCHAR2(30) NOT NULL Owner of the fact table.
FACT_TABLE_NAME VARCHAR2(30) NOT NULL Name of the fact table.

COLUWN_NAME VARCHAR2(30) NOT NULL Name of the GID column.

Viewing OLAP Catalog Metadata 14-15

ALL_OLAP2_FACT_LEVEL_USES

ALL_OLAP2_FACT_LEVEL_USES

ALL_CLAP2_FACT_LEVEL_USES shows the joins between dimension tables and
fact tables in a star or snowflake schema. For more information, see "Joining Fact
Tables with Dimension Tables" on page 13-4.

Column Data Type NULL Description

OMNER VARCHAR2(30) NOT NULL Owner of the cube.

CUBE_NAME VARCHAR2(30) NOT NULL Name of the cube.

DI MENSI ON_OWNER VARCHAR2(30) NOT NULL Owner of the dimension.

DI MENSI ON_NAMVE NUVBER NOT NULL Name of the dimension.

DI MENSI ON_ALI AS VARCHAR2(30) Dimension alias (if applicable).

HI ERARCHY_NAME NOT NULL Name of the hierarchy.

DI M H ER_COVBO | D NUMBER NOT NULL ID of the dimension hierarchy combination associated with this
fact table.

LEVEL_NAME VARCHAR2(30) Name of the level within the hierarchy where the mapping
occurs.

FACT_TABLE_OMER VARCHARZ2(30) NOT NULL Owner of the fact table.

FACT_TABLE_NAME VARCHAR2(30) NOT NULL Name of the fact table.

COLUWMN_NAME VARCHAR2(30) NOT NULL Name of the foreign key column in the fact table.

PCSI TI ON NUMBER Position of this column within a multi-column key.

DI MENSI ON_KEYNVAP_ VARCHARZ2(30) NOT NULL Type of key mapping for the fact table. Values may be:

TYPE LL (Lowest Level), when only lowest-level dimension members
are stored in the key column. The fact table is unsolved.
ET (Embedded Totals), when dimension members for all level
combinations are stored in the key column. The fact table is
solved (contains embedded totals for all level combinations).
RU (Rolled Up), when dimension members for each level are
stored in a separate key column (multi-column key).

FOREI GN_KEY_NAME VARCHARZ2(30) Name of the foreign key constraint applied to the foreign key

column. Constraints are not used by the CWW2 APlIs.

14-16 Oracle9i OLAP User’s Guide

15

CWM2_OLAP AW ACCESS

The CWW2_OLAP_AW ACCESS package contains procedures for generating scripts
that create views of analytic workspace objects. After running the scripts and
creating the views, you can use standard SQL to access data stored in the analytic

workspace. You can also use the views to define OLAP metadata so that OLAP API
applications can access the multidimensional objects.

See Also:

» Chapter 2, "Manipulating Multidimensional Data" for a
discussion of analytic workspaces and the OLAP DML.

» Chapter 3, "Developing OLAP Applications" for information
about how this package fits into the process of preparing a
database for use with OLAP applications.

= Chapter 9, "Creating an Analytic Workspace From Relational
Tables" for information on creating SQL access for analytic
workspaces created by AW CREATE.

This chapter contains the following topics:

When to Use the AW_ACCESS Package
Process Overview

Preparing the Analytic Workspace
Specifying the Source and Target Objects
Example: Creating Views

Summary of CWM2_OLAP_AW_ACCESS Subprograms

CWM2_OLAP_AW_ACCESS

15-1

When to Use the AW_ACCESS Package

When to Use the AW_ACCESS Package

If your analytic workspace was created by the CWWR_ AW CREATE package, you will
use procedures in that package to generate the views of the workspace. Those
procedures depend on structures within the analytic workspace that are specific to
AW CREATE.

If your analytic workspace was created by some other means (OLAP Worksheet or
the DBMS_AWpackage), you can use the CWWR_ AW ACCESS package to generate the
views. CWWR_AW ACCESS is essentially a wrapper for the OLAP_TABLE function.

Prerequisites

See Also:
« Chapter 12, "OLAP_TABLE".

= Chapter 9, "Creating an Analytic Workspace From Relational
Tables" for information on creating SQL access for analytic
workspaces created by AW CREATE.

Theut!| _fil e_dir parameter must be set to a valid directory, as described in
"Initialization Parameters for Oracle OLAP" on page 6-3. Otherwise, the procedures
in CWW2_OLAP_AW ACCESS will not be able to write the SQL scripts to a file.

Process Overview

These are the basic steps you need to follow to generate views of data stored in an
analytic workspace. They are described more fully throughout this chapter.

1.

Explore the analytic workspace and identify the objects that you want to expose
in a relational view.

For each view, create a text file that defines the mapping between analytic
workspace objects and columns in the view.

If you intend to create OLAP Catalog metadata, then you need to generate
views that form a star schema, that is, fact views and dimension views. For
more information about OLAP Catalog schema requirements, refer to
Chapter 4, "Designing Your Database for OLAP".

In PL/SQL, execute the Cr eat eAWAccess St ruct ur es_FRprocedure for each
input text file.

Tip: Create a script that executes these procedures.

15-2 Oracle9i OLAP User’s Guide

Preparing the Analytic Workspace

Use a text editor to view the resulting scripts and make whatever changes you
wish.

In PL/SQL, run the scripts.

If errors are triggered, do the following;:

a. Identify and fix the problems in the input files.
b. Delete the script files.

Cr eat eAWAccess St ruct ur es_FRwill not overwrite an existing output
file. If you created a script to execute this procedure on each of your input
files, you may want to begin that script by deleting existing output files.

c. Regenerate the script files.

In PL/SQL, select data from the views to verify that they work properly. Errors
at this stage are caused by problems in the definition of the workspace objects.

If necessary, correct the errors and regenerate the views.
When no errors occur, commit the views to the database.
Change the access protection of the views with commands such as this:

GRANT SELECT ON VI EW el ectro_product _view TO PUBLIC

Preparing the Analytic Workspace

The CWW2_OLAP_AW ACCESS package can expose various types of analytic
workspace objects in relational views. You will need to gather information about
these objects and decide how you are going to map them to the columns of a
relational view. These are the steps you might take:

1.
2.
3.

Identify the measures that you want to make available to applications.
Identify the dimensions of the measures.

For hierarchical dimensions, identify the objects that support the hierarchy:
= Parent relation

= Hierarchy dimension

« Inhierarchy variable

Identify the dimension attributes, which are objects that provide additional
information about the dimensions.

CWM2_OLAP_AW_ACCESS 15-3

Specifying the Source and Target Objects

5. If you plan to create OLAP Catalog metadata, be sure that you have a GID
needed by the OLAP API. For a description of this object, refer to Chapter 12,
"OLAP_TABLE".

Specifying the Source and Target Objects

A delimited text string specifies multidimensional source objects in the analytic
workspace and maps them to target columns in a relational view. You can supply
this delimited text string either in files (as described in

"CreateAWA cessStructures_FR Procedure” on page 15-17) or directly in the
command line (as described in "Create AWAccessStructures Procedure” on

page 15-18).

Each source and target object is defined by a keyword followed by one or more
values. Two colons (:) delimit the keywords and values. In the following example,
MEASURE is a keyword, and sal es and cost s are the names of measures in the
analytic workspace.

MEASURE: : sal es: : costs

When you provide mapping information in a text file, each keyword begins a new
line:

MEASURE: : sal es: : cost s

MEASURE COLUMNS: : sal es: : costs

When you provide mapping information directly in the command line, a semicolon
delimits the individual object specifications:

MEASURE: : sal es: : cost s; MEASURE COLUWNS: : sal es: : costs

Each call to one of these procedures generates a single view. For example, to create
one fact view and three dimension views, you must execute the procedure four
times. If you are supplying input files for the mapping information, then you must
create four files, one for each view that you want to generate.

Note: If you are creating views that will be accessed directly using
SQL, then you can structure the views in whatever way is
appropriate for your application.

If you will use the views to create OLAP Catalog metadata, then
you must create a star schema with measure views and dimension
views as described in this chapter.

15-4 Oracle9i OLAP User’s Guide

Specifying the Source and Target Objects

Defining Dimension Views

For a star schema, you must define a dimension view for every hierarchy of every
dimension of the fact view. A flat dimension, that is, one with no hierarchies,
requires a single dimension view.

Since each call to one of these procedures generates a single view, you must create a
separate mapping file for each one. For example, if the GEOGRAPHY dimension has
two hierarchies, then you need to create two mapping files.

Table 15-1 describes the keywords that identify the source data in an analytic
workspace that will be used to create a dimension view. The object naming
conventions used by AW CREATE are provided in the description of the source data.
Table 15-2 describes the keywords that specify the target columns in the generated
database dimension view. Enter these keywords in the same input file. Some of
these keywords are required and others are optional. DI MENSI ONmust be the first
keyword. The

Table 15-1 Keywords for Defining the Source Data for a Dimension View

Keyword Description

DI MENSI ON A workspace DI MENSI ON, which dimensions the
measures in the fact view, as described in
"Dimensions" on page 12-3. This keyword must
appear first. Required.

AW CREATE name: [owner_]dimension

HI ERARCHY A workspace RELATI ON that identifies the parent
value for each dimension value in the hierarchy, as
described in "Hierarchies" on page 12-3. Required
for hierarchical dimensions.

AW CREATE name: [owner_]dimension_PARENTREL

I N HI ERARCHY A workspace VARl ABLE with a BOOLEAN data type
that identifies whether or not each value of
DI MENSI ONis included in the hierarchy, as
described in "In-Hierarchy Variables" on page 12-5.
Required only when some dimension members are
omitted from the hierarchy.

AW CREATE name:
[owner_]dimension_| NHI ERARCHY

CWM2_OLAP_AW_ACCESS 15-5

Specifying the Source and Target Objects

Table 15-1 (Cont.) Keywords for Defining the Source Data for a Dimension View

Keyword

Description

HI ERARCHY DI MENSI ON

HI ERARCHY DI MENSI ON VALUE

PARENT Q@ D

ATTRI BUTES

COLUWN LEVEL DI MENSI ON

COLUWN LEVEL RELATI ON

The workspace DI MENSI ON that contains the names
of the hierarchies, as described in "Hierarchy
Dimensions" on page 12-4. Required only if more
than one hierarchy is defined for DI MENSI ON

AW CREATE name: [owner_]dimension_H ERDI M

The dimension member in the H ERARCHY

DI MENSI ON object that identifies the hierarchy.
Required only if H ERARCHY DI MENSI ONis
specified.

A workspace VARl ABLE with an | NTEGER data type
that identifies the hierarchy level of each dimension
value. Use the GROUPI NG D command to generate
this variable, as described in "Grouping IDs" on
page 12-6. Improves performance of the OLAP APL

AW CREATE name: [owner_]dimension_G D

The same GID variable used with the GID keyword.
Parent grouping IDs will be generated automatically
from the GID variable.

One or more workspace VARI ABLE objects that
contain descriptive information about the dimension
members, as described in "Attributes" on page 12-8.
Optional.

AW CREATE name: [owner_]dimension_attribute

A workspace DI MENSI ON whose values identify the
levels of a cube dimension, and which dimensions
the COLUMN LEVEL RELATI ONobject. Required for
hierarchical dimensions.

AW CREATE name: [owner_]dimension_LVLDI M

A workspace RELATI ON with a value for each level
in the hierarchy. The Hl ERHElI GHT command in the
OLAP DML generates the values of this relation.
Required for hierarchical dimensions.

AW CREATE name: [owner_]dimension_FAM LYREL

15-6 Oracle9i OLAP User’s Guide

Specifying the Source and Target Objects

Important: ~ When listing the keywords for the target columns, you
must list DI MENSI ON COLUMN, PARENT COLUWN, and G D
COLUWn that order. All column names must comply with Oracle
requirements.

Table 15—-2 Keywords for Defining the Target Columns for a Dimension View

Keyword Description

DI MENSI ON COLUWN A valid name for the column that will represent
dimension values from DI MENSI ON. Required.

PARENT COLUWN A valid name for the column that will represent the

parent value for each dimension value. Required for
hierarchical dimensions.

G D COLUW A valid name for the column that will represent the
grouping IDs from G D. Required for hierarchical
dimensions.

PARENT G D COLUWN A valid name for the column that will represent the
calculated parent grouping IDs. Optional.

DI MENSI ON DATATYPES The data types of the previously specified columns,
as follows:
First value: DI MENS| ON' COLUWN
Second value: PARENT COLUWN
Third value: @ D COLUWN
Fourth value: PARENT G D
Required for each defined column.

For information about compatible workspace and
database data types, search for the SQL FETCH
command in the Oracle9i OLAP DML Reference
help.

LEVEL COLUWNS Valid names for the columns that represent level
values. You must identify a column for each value in
COLUWN LEVEL DI MENSI ON. For example, if the
level dimension has four values, then you must
define four columns. Required for hierarchical
dimensions.

CWM2_OLAP_AW_ACCESS 15-7

Specifying the Source and Target Objects

Table 15-2 (Cont.) Keywords for Defining the Target Columns for a Dimension View

Keyword Description

LEVEL DATATYPES The data types of the columns listed in LEVEL
COLUMNS. The data types must correspond in
number and order to the columns listed in LEVEL
COLUMWNS, that is, the first column will be defined
with the first data type, the second column will be
defined with the second data type, and so forth.
Required when LEVEL COLUMWNS is specified.

ATTRI BUTE COLUWNS Valid names for the columns that represent attribute
values. The columns must correspond in number
and order to the variables listed in ATTRI BUTES,
that is, the first column will represent the first
variable, the second column will represent the
second variable, and so forth. Optional.

ATTRI BUTE DATATYPES The data type of the columns listed in ATTRI BUTE
COLUMNS. The data types must correspond in
number and order to the columns listed in
ATTRI BUTE COLUMWNS, that is, the first column will
be defined with the first data type, the second
column will be defined with the second data type,
and so forth. Required when ATTRI BUTE COLUWNS
is specified.

Defining Fact Views

You can create a single group of views for several measures if they are dimensioned
identically, as described in "Measures" on page 12-3.

For the OLAP API, you need to create one view for each combination of dimension
hierarchies. The views must contain columns for the measures themselves and the
dimension values that qualify this data. You can copy statements from the input
files for dimension views into the input files for fact views.

Create input files (or text strings) that includes the following keywords:

= All of the keywords in Table 15-3. They must appear in the order shown at the
beginning, before keywords for the dimensions.

= The following keywords from Table 15-1, " Keywords for Defining the Source
Data for a Dimension View" if they appear in the input file for the dimension
view: DI MENSI ON, H ERARCHY, | N HI ERARCHY, and G D. If you wish to create
a denormalized view for use by SQL applications, you can include additional
keywords.

15-8 Oracle9i OLAP User’s Guide

Example: Creating Views

« Keywords from Table 15-2, " Keywords for Defining the Target Columns for a
Dimension View" that correspond to the source data keywords. The OLAP API
uses the DI MENSI ON and @ D columns in the fact views, and uses the
dimension views for all other information about the dimensions. Thus, you
only need to define columns for the dimension members and the GIDs.

Table 15-3 lists the keywords that map workspace measures to columns in a fact
view.

Table 15-3 Additional Keywords for Defining a Fact View

Keyword Description

MEASURE One or more workspace VARl ABLE, RELATI ON, or FORMULA
objects that are dimensioned identically, as described in
"Measures" on page 12-3. The MEASURE keyword must appear
before the other keywords listed in this table.

MEASURE COLUWNS The names for the columns in the fact view where the data
from MEASURE will be represented. You can specify any valid
column name. The columns correspond in number and order
to the workspace objects listed in MEASURE, that is, the first
measure will be mapped to the first column, the second
measure to the second column, and so forth.

MEASURE DATATYPES The data types of the columns in the fact view. The data types
must correspond in number and order to the columns listed in
MEASURE COLUMNS, that is, the first column will be defined
with the first data type, the second column will be defined
with the second data type, and so forth.

For a comparison between workspace data types and database
data types, search for the SQL FETCHcommand in the
Oracle9i OLAP DML Reference help.

Example: Creating Views

This example creates fact views and dimension views for two variables, sal es and
cost s. These variables were not created by the AW CREATE process.

The following are the object definitions for sal es and cost s. Note that they are
dimensioned identically.

DEFI NE SALES VARI ABLE SHORT <GECGRAPHY PRODUCT CHANNEL TI ME>
DEFI NE COSTS VARI ABLE SHORT <GEOGRAPHY PRODUCT CHANNEL TI ME>

CWM2_OLAP_AW_ACCESS 15-9

Example: Creating Views

In a star schema for use with OLAP Catalog metadata, you would create dimension
views for each hierarchy and fact views for each combination of dimension
hierarchies.

If the hierarchies shown in Table 15—4 have been defined for these dimensions, then
the following views must be generated:

« Six dimension views(2+1+1+2)

« Four fact views (2* 1* 1* 2)

Table 15-4 Sample Dimension Hierarchies

Dimensions Hierarchies Required Number of Views
geogr aphy st andard 2
consol i dat ed
pr oduct st andard 1
channel st andard 1
time standard 2
ytd

Example: Input Files for Mapping Variables to Views

This example creates views in a star schema for use by the OLAP APL

Geography Dimension Standard Hierarchy View

These statements define the geogr aphy dimension view for the STANDARD
hierarchy. A separate file is required to generate another view to support the
CONSOLI DATED hierarchy, but it is not included in this example.

DI MENSI ON: : geogr aphy

H ERARCHY: : geogr aphy. parentrel

| NHI ERARCHY: geogr aphy. i nhi erar chy

H ERARCHY DI MENSI ON: : geogr aphy. hi erarchi es

H ERARCHY DI MENSI ON VALUE: : STANDARD

A D:: geography.gid

PARENT @G D: : geogr aphy. gi d

ATTRI BUTES: : geogr aphy. | ongl abel : : geogr aphy. short| abel
COLUWN LEVEL DI MENSI ON: : geography. | vl di m

COLUWN LEVEL RELATI ON: : geogr aphy. hi er hei ght

DI MENSI ON COLUWN: : geogr aphy

15-10 Oracle9i OLAP User’s Guide

Example: Creating Views

PARENT COLUWN: : geog_par ent

A D COLUWN: : geog_gid

PARENT G D COLUWN: : geogp_gid

DI MENSI ON DATATYPES: : var char 2(16) : : var char 2(16) : : nunber (10) : : nunber (10)
LEVEL COLUWNS::city::country::continent::world

LEVEL DATATYPES: : varchar2(16):: varchar2(16):: varchar2(16):: varchar 2(16)
ATTRI BUTE COLUWNS: : geog_| ong: : geog_short

ATTRI BUTE DATATYPES: : var char (32): : var char (16)

Product Dimension View
The following statements define the pr oduct dimension view.

DI MENSI ON: : pr oduct

H ERARCHY: : product . parentrel

A D: :product.gid

PARENT G D:: product.gid

ATTRI BUTES: : product . | ongl abel : : product . short| abel
COLUWN LEVEL DI MENSI ON: : product. | vl dim

COLUWN LEVEL RELATION: : product. hi er hei ght

DI MENSI ON COLUWN: : pr oduct

PARENT COLUWN: : pr od_par ent

G D COLUWN: : prod_gid

PARENT G D COLUWN: : prod_gi d

DI MENSI ON DATATYPES: : var char 2(16) : : var char 2(16) : : nunber (10) : : nunber (10)
LEVEL COLUMNS: : equi pnent : : conponent : : di vi si on: :t ot al prod

LEVEL DATATYPES: : varchar2(16)::varchar2(16)::varchar2(16):: varchar2(16)
ATTRI BUTE COLUWNS: : prod_| ong: : prod_short

ATTRI BUTE DATATYPES: : var char (32): : var char (16)

Channel Dimension View
These statements define the channel dimension view.

DI MENSI ON: : channel

H ERARCHY: : channel . parentrel

A D::channel . gid

PARENT G D:: channel . gid

ATTRI BUTES: : channel . | ongl abel : : channel . short| abel
COLUWN LEVEL DI MENSI ON:: channel .1 vl dim

COLUWN LEVEL RELATI ON:: channel . hi er hei ght

DI MENSI ON COLUWN: : channel

PARENT COLUWN. : chan_par ent
A D COLUW: : chan_gid

CWM2_OLAP_AW_ACCESS 15-11

Example: Creating Views

PARENT G D COLUWN: : chanp_gi d

DI MENS|I ON DATATYPES: : var char 2(16) : : var char 2(16) : : nunber (10) : : nunber (10)
LEVEL COLUWNS: :outlet::total chan

LEVEL DATATYPES: : varchar2(16):: varchar2(16)

ATTRI BUTE COLUMNS: : chan_| ong: : chan_short

ATTRI BUTE DATATYPES: : var char (32): : var char (16)

Time Standard Hierarchy Input File

These statements define the t i me dimension view for the STANDARD hierarchy. A
separate file is required to generate another view to support the YTDhierarchy, but
it is not included in this example.

DI MENSI ON: : ti me

H ERARCHY: : ti ne. parentrel

| NHI ERARCHY: tine.inhierarchy

H ERARCHY DI MENSI ON: : ti me. hi erar chi es

H ERARCHY DI MENSI ON VALUE: : STANDARD
GD:time.gid

PARENT G D::tine.gid

ATTRI BUTES: : time. | ongl abel : :tine. short| abel
COLUWN LEVEL DI MENSION: :time.lvldim
COLUWN LEVEL RELATION::tine. hierheight

DI MENSI ON COLUWN: : ti me

PARENT COLUWN: : ti me_par ent

G D COLUW: : time_gid

PARENT G D COLUWN: :tinep_gid

DI MENSI ON DATATYPES: : var char 2(8) : : varchar 2(8) : : nunber (10) : : nunber (10)
LEVEL COLUWNS: : nonth::quarter::year

LEVEL DATATYPES: : varchar2(16)::varchar2(16):: varchar2(16)

ATTRI BUTE COLUWNS: : tinme_l ong::time_short

ATTRI BUTE DATATYPES: : var char (32): : var char (16)

Sales and Costs Fact Views

For the OLAP API, you need to create a fact view for each combination of
dimension hierarchies. In addition to the fact columns, the OLAP API also needs
columns for dimension members and grouping IDs.

The following statements identify two workspace measures, sal es and cost s, as
the source objects for a fact view. The fact view will have columns for the data from
sal es and cost s. Both of these columns will have a NUMBER data type with 12
significant digits and 2 decimal places. The data from sal es will be fetched into the
sal es column, and the data from cost s will be fetched into the cost s column.

15-12 Oracle9i OLAP User’s Guide

Example: Creating Views

The following is an example of just one of the four input files needed by the sal es
and cost s measures. The statements defining the pr oduct and channel columns
are also omitted, as indicated by the ellipsis.

MEASURE: : sal es: : costs
MEASURE COLUWNS: : sal es: : costs
MEASURE DATATYPES: : nunber (12, 2) : : nunber (12, 2)

DI MENSI ON: : geogr aphy

H ERARCHY: : geogr aphy. parentrel

| NHI ERARCHY: geogr aphy. i nhi er ar chy

H ERARCHY DI MENSI ON: : geogr aphy. hi erarchi es
H ERARCHY DI MENSI ON VALUE: : STANDARD

A D:: geography.gid

DI MENSI ON COLUWN: : geogr aphy
G D COLUWN: : geog_gi d
DI MENSI ON DATATYPES: : var char 2(16) : : nunber (10)

DI MENSI ON: : time

H ERARCHY: : ti ne. parentrel

| NHI ERARCHY: tine.inhierarchy

H ERARCHY DI MENSI ON : ti . hi erarchi es
H ERARCHY DI MENSI ON VALUE: : STANDARD
AD:time.gid

DI MENSI ON COLUWN: : ti me
G D COLUW: :tine_gid
DI MENSI ON DATATYPES: : var char 2(8) : : nurber (10)

Example: Script for the Product View

This PL/SQL command uses the / user s/ or acl e/ mapfil es/ product . t xt
input file shown in "Product Dimension View" on page 15-11 to generate a script
named / user s/ oracl e/ scri pt s/ product. sqgl . The resulting view will be
named el ectro_product _vi ew

CALL OWWR_OLAP_AW ACCESS. CREATEAWACCESSSTRUCTURES FR(
"lusers/oracle/scripts/’, 'product.sql’, "electro_product_’,
"scott.electronics’, '/users/oracle/mapfiles/’, 'product.txt’);

Before executing the script, you may edit it.

CWM2_OLAP_AW_ACCESS 15-13

Example: Creating Views

--product. sql
--CGenerated on:

SET ECHO ON

15- FEB- 2002 09: 16: 42am

SET LI NESI ZE 200
SET PAGESI ZE 50
SET SERVERQUT ON

DROP TYPE el ectro_product TBL;
DROP TYPE el ectro_product _OBJ;

CREATE TYPE el ectro_product _0BJ AS OBJECT (

PRODUCT VARCHARZ(16) ,

PROD_PARENT VARCHAR2(16) ,
PROD_G D NUMBER(10),

PRODP_GI D NUVBER(10) ,

EQUI PMENT VARCHAR2(16) ,
COVPONENT VARCHARY(16) ,

DI VI SI ON VARCHAR2(16) ,

TOTALPRCD VARCHAR2(16) ,

PROD_LONG VARCHAR(32),

PROD_SHORT VARCHAR(16));

/

CREATE TYPE el ectro_product _TBL AS TABLE OF el ectro_product _OBJ;

/

CREATE OR REPLACE FUNCTI ON el ectro_product LMAP RETURN VARCHAR? | S
--This function will return the following Limt Mp:
-- DI MENSI ON PRODUCT FROM PRODUCT
W TH H ERARCHY PROD_PARENT FROM PRODUCT. PARENTREL
G D PROD_G D FROM PRODUCT. G D
PARENTG D PRODP_G D FROM PRODUCT. @ D
LEVELREL EQUI PMENT, COVPONENT, DI VI SION, TOTALPRCD FROM
PRODUCT. H ERHEI GHT USI NG PRCDUCT. LVLDI M
ATTRI BUTE PROD_LONG FROM PRODUCT. LONGLABEL
ATTRI BUTE PRCD_SHORT FROM PRCDUCT. SHORTLABEL
vRet Val VARCHAR2(443)

BEG N
vRet Val
vRet Val
vRet Val
vRet Val
vRet Val

15-14 Oracle9i OLAP User’s Guide

vRet Val
vRet Val
vRet Val
vRet Val
vRet Val

" DI MENSI ON PRODUCT FROM PRODUCT '

"WTH H ERARCHY PROD_PARENT FROM PRCDUCT. PARENTREL
"G D PROD_GD FROM PRODUCT.G D ';

" PARENTG D PRODP_G D FROM PRODUCT. G D '

" LEVELREL EQUI PMENT, COVPONENT, DIVISION, TOTALPROD

Example: Creating Views

FROM PRODUCT. Hl ERHEI GHT USI NG PRCDUCT. LVLDIM "

VRetVal := vRetVal || ’ATTRI BUTE PROD LONG FROM PRODUCT. LONGLABEL ’;
VRet Val := vRetVal || ’ATTRI BUTE PROD_SHORT FROM PRODUCT. SHORTLABEL' ;
RETURN vRet Val ;

END el ectro_product _LMAP,
/

SHOW ERRCRS;

CREATE OR REPLACE VI EWel ectro_product VI EWAS SELECT * FROM
TABLE(CAST(OLAP_TABLE(" scott. el ectroni cs DURATI ON QUERY', 'el ectro_product TBL',
"', electro_product _LMAP())AS el ectro_product _TBL));

--The conmand bel ow shoul d be nodified to provide appropriate security to
Anal ytic Wrkspace data.
-- GRANT SELECT ON el ectro_product VI EWTO PUBLI C;

--End of file: product.sql

Example: Product View

The script shown in "Example: Script for the Product View" on page 15-13 creates a
view named ELECTRO_PRODUCT_VI EWwhich has the following definition:

SELECT "PRODUCT", "PRCD_PARENT", "PROD G D', "PRCDP_G D' "EQUI PVENT",
" COMPONENT", "DI VI SI ON, "TOTALPRCD', "PROD _LONG', "PROD_SHORT"
FROM TABLE(CAST (OLAP_TABLE(' scott. el ectronics DURATI ON QUERY",
"electro_product _TBL', '', electro_product LMAP()) AS electro_product TBL))

Use a command like the following to access data about products from the
el ectroni cs analytic workspace:

sel ect product, prod_long, prod_short fromelectro_product_view
where prod_gi d=0;

PRODUCT PROD LONG PROD SHORT
PORTCD Portabl e CD Pl ayer Port CD
PORTST Portabl e Stereo Port Stereo
PORTCAS Portabl e Cassette Port Cassette
TUNER Tuner Tuner
METALCAS Metal Cassette M| Cassette

CWM2_OLAP_AW_ACCESS 15-15

Summary of CWM2_OLAP_AW_ACCESS Subprograms

STNDCAS Standard Cassette Std Cassette
STNDVHSVI DEO Standard VHS Video VHS Vi deo
8MwWI DEO 8MWM Vi deo 8MWM Vi deo
H 8VI DEO H 8 Video H 8 Video

22 rows sel ected.

Summary of CWM2_OLAP_AW_ACCESS Subprograms

Table 15-5 lists the subprograms provided in CWWR_ OLAP_AW ACCESS.

Table 15-5 CWM2_OLAP_AW_ACCESS

Subprogram Description

CreateAWAccessStructures_ FR Functions the same way as

Procedure Cr eat eAWAccess St ruct ur es except that it accepts a
file that contains the mapping information. This procedure
parses the information contained in the file and passes it,
along with the other parameters, to
Creat eAWAccessStruct ures.

Create AWAcccessStructures Generates one or more scripts. The scripts create views

Procedure that represent the multidimensional objects in an analytic
workspace. The views take the place of dimension tables
and measure tables when creating metadata. This
procedure accepts a delimited text string on the command
line for the mapping information. The mapping
information identifies source objects in the analytic
workspace and target columns in the database.

15-16 Oracle9i OLAP User’s Guide

Summary of CWM2_OLAP_AW_ACCESS Subprograms

CreateAWAccessStructures_FR Procedure

Syntax

Parameters

This procedure creates a SQL script that will create the relational objects needed for
SQL to access objects in the analytic workspace, such as object types and views. As
input, it takes a text file that maps the workspace objects to columns of the views.

Creat eAWAccessSt ruct ures_FR(

script_directory VARCHARZ,
script_name VARCHAR2,
prefix VARCHAR?,
aw_name VARCHAR?,
infile_directory VARCHAR2
infile_nane VARCHAR2) ;

Table 15-6 CreateAWAccessStructures_FR Procedure Parameters

Parameter Description

script_directory An existing directory path where scri pt _name will be written.

scri pt _nane The file name that will be given to the generated SQL script. This
procedure does not overwrite an existing file, so be sure that a file
by the name you specify does not already exist in
script_directory.

prefix A prefix that will be given to the view created by executing the
script. This prefix identifies the objects in a schema that relate to the
analytic workspace. It can be up to 25 characters long, and must
comply with the requirements for a database object name.

aw_narne The name of the analytic workspace where the source objects are
stored.

infile_directory Thedirectory path where thei nfil e_nane is stored.

infile_name The name of the input file that contains mapping information, as
described in Example , "Specifying the Source and Target Objects".

CWM2_OLAP_AW_ACCESS 15-17

CreateAWAccessStructures Procedure

CreateAWAccessStructures Procedure

This procedure creates a SQL script that will create the relational objects needed for
SQL to access objects in the analytic workspace, such as object types and views. It
takes a delimited string as input for the mapping information.

Syntax
Creat eAWAccessSt ruct ur es(
script_directory VARCHAR?,
script_filenane VARCHAR2,
prefix VARCHAR?,
aw_namne VARCHAR?,
mappi ng_i nfo VARCHAR2) ;
Parameters

Table 15-7 CreateAWAccessStructures Procedure Parameters

Parameter Description

script_directory An existing directory path where scri pt _narme will be written.

scri pt _nane The file name that will be given to the generated SQL script. This
procedure does not overwrite an existing file, so be sure that a file
by the name you specify does not already exist in
script_directory.

prefix A prefix that will be given to the view created by executing the
script. This prefix identifies the objects in a schema that relate to the
analytic workspace. It can be up to 25 characters long, and must
comply with the requirements for a database object name.

aw_narmne The name of the analytic workspace where the source objects are
stored.
mappi ng_i nf o A delimited string that contains mapping information, as described

in "Specifying the Source and Target Objects" on page 15-4.

15-18 Oracle9i OLAP User’s Guide

16

CWM2 _OLAP AW CREATE

The CWW2_OLAP_AW CREATE package provides procedures for moving data from a
relational data warehouse to an analytic workspace and generating relational views
of the workspace.

See Also:

» Chapter 9, "Creating an Analytic Workspace From Relational
Tables".

» Chapter 13, "Using the OLAP Catalog Metadata APIs".

This chapter discusses the following topics:

« Summary of CWM2_OLAP_AW_CREATE Subprograms

CWM2_OLAP_AW_CREATE 16-1

Summary of CWM2_OLAP_AW_CREATE Subprograms

Summary of CWM2_OLAP_AW_CREATE Subprograms

Table 16-1 CWM2_OLAP_AW_CREATE Subprograms

Subprogram Description

AW DI MENSI ON_CREATE Creates containers within an analytic workspace to

Procedure hold the dimension members of an OLAP Catalog
dimension.

AW DI M _DEFI NE_LOAD Procedure Creates aload definition for a dimension.

AW DI M FI LTER _LOAD Procedure Specifies a SQL WHERE clause to use in the query
against the dimension table.

AW DI MENSI ON_REFRESH Uses a load definition to load dimension members

Procedure into an analytic workspace.

AW DI MENSI ON_CREATE_ACCESS Generates relational views of an analytic workspace

Procedure dimension.

AW CUBE_CREATE Procedure Creates containers within an analytic workspace to
hold the data of an OLAP Catalog cube.

AW CUBE_DEFI NE_LOAD Creates a load definition for a cube.

Procedure

AW CUBE_FI LTER_LOAD Specifies a SQL WHERE clause to use in the query

Procedure against the fact table.

AW CUBE_MEASURE_LOAD Specifies a measure to load into the analytic

Procedure workspace.

AW CHOOSE_LEVEL_TUPLES Creates a table of level combinations for a cube.

Procedure

AW DEFI NE_AGG_PLAN Procedur e Specifies how to aggregate the cube’s data within
the analytic workspace.

AW CUBE_REFRESH Pr ocedur e Uses a load definition to load data from a fact table
into an analytic workspace.

AW CUBE_CREATE_ACCESS Generates relational views of an analytic workspace

Procedure cube.

AW DIMENSION_CREATE Procedure

This procedure creates the containers within an analytic workspace to hold an
OLAP Catalog dimension.

The OLAP Catalog dimension must conform to the requirements specified in "Basic
Star or Snowflake Schema" on page 5-4.

16-2 Oracle9i OLAP User’s Guide

Summary of CWM2_OLAP_AW_CREATE Subprograms

If the analytic workspace does not already exist, AW DI MENSI ON_CREATE creates

it.
Syntax
AW DI MENSI ON_CREATE (
aw_owner IN VARCHARZ,
aw_namne IN VARCHAR?,
di mensi on_owner IN VARCHAR?,
di mensi on_name IN VARCHAR?);
Parameters

Table 16—2 AW_DIMENSION_CREATE Procedure Parameters

Parameter Description
aw_owner Owner of the analytic workspace.
aw_namne

di nensi on_owner

di nensi on_nane

Name of the analytic workspace.
Owner of the OLAP Catalog dimension.
Name of the OLAP Catalog dimension.

AW _DIM_DEFINE_LOAD Procedure

This procedure creates a load definition for an OLAP Catalog dimension. The load
definition specifies the dimension members to load from the dimension tables and
how to store them within the analytic workspace.

The load definition is used by AW DI MENSI ON_REFRESH

The load definition can have one of the types described in Table 16-3.

Table 16-3 Load Types for Dimensions

Load Type

Description

FULL

FULL_ADDI TI ONS ONLY

Load all dimension members. If the dimension has already
been loaded, delete all members and replace with the new
ones.

Load all dimension members. If the dimension has already
been loaded, keep the existing members that have not changed
and add the new members.

CWM2_OLAP_AW_CREATE 16-3

AW_DIM_FILTER_LOAD Procedure

Syntax

AW DI M DEFI NE_LOAD (
di mensi on_owner
di mensi on_name
| oad_name
| oad_type
uni que_keys

Parameters

IN
IN
IN
IN
IN

VARCHAR?,
VARCHAR?,
VARCHAR?,
VARCHAR?,
VARCHAR?) ;

Table 16-4 AW_DIM_DEFINE_LOAD Procedure Parameters

Parameter

Description

di mensi on_owner
di nensi on_nane
| oad_name

| oad_type

uni que_keys

Owner of the OLAP Catalog dimension.

Name of the OLAP Catalog dimension.

Name of a load definition.

Type of data load. Specify one of the values listed in
Table 16-3, "Load Types for Dimensions".

Whether or not the members of this dimension are unique
across all levels. Values can be YES or NO The default is NO.

AW _DIM_FILTER _LOAD Procedure

This procedure creates a SQL WHERE clause to be added to a load definition for a
dimension. The WHERE clause specifies which members of a hierarchy should be
loaded from the dimension table to the analytic workspace.

Syntax

AW DI M FI LTER_LOAD (
di mensi on_owner
di mensi on_name
| oad_name
di m tabl e_owner
dimtabl e_name
where_cl ause

16-4 Oracle9i OLAP User’s Guide

IN
IN
IN
IN
IN
IN

VARCHAR?,
VARCHAR?,
VARCHAR?
VARCHAR?,
VARCHAR?,
VARCHAR?) ;

Summary of CWM2_OLAP_AW_CREATE Subprograms

Parameters

Table 16-5 AW_DIM_FILTER_LOAD Procedure Parameters

Parameter Description

di mensi on_owner Owner of the OLAP Catalog dimension.

di nensi on_narne Name of the OLAP Catalog dimension.

| oad_name Name of a load definition.

di m tabl e_owner Owner of the dimension table that underlies this OLAP

Catalog dimension.

di m t abl e_nane Name of the dimension table that underlies this OLAP
Catalog dimension.

wher e_cl ause A SQL WHERE clause that specifies which rows to load from
the dimension table.

AW _DIMENSION_REFRESH Procedure

This procedure uses a load definition to load values from dimension tables into an

Syntax

Parameters

analytic workspace.

If the analytic workspace dimension has never been populated, AW DI MENSI ON_
REFRESH does a full load. Otherwise, it refreshes the dimension based on the load
type described in Table 16-3 and on any filter criteria that may have been
established by a call to AW DI M_FI LTER_LOAD.

AW DI MENSI ON_REFRESH (

aw_owner I'N
aw_nane IN
di mensi on_owner IN
di mensi on_name IN
| oad_name IN

VARCHAR2,
VARCHAR2,
VARCHAR2,
VARCHAR?,
VARCHAR?) ;

Table 166 AW_DIMENSION_REFRESH Procedure Parameters

Parameter Description

aw_owner Owner of the analytic workspace.

CWM2_OLAP_AW_CREATE 16-5

AW_DIMENSION_CREATE_ACCESS Procedure

Table 166 (Cont.) AW_DIMENSION_REFRESH Procedure Parameters

Parameter Description

aw_narne Name of the analytic workspace.

di nensi on_owner Owner of the OLAP Catalog dimension.
di nensi on_narne Name of the OLAP Catalog dimension.
| oad_name Name of a load definition.

AW _ DIMENSION CREATE_ACCESS Procedure

This procedure creates a script that you can run to generate relational views of an
AW dimension.

The views contain calls to the OLAP_TABLE function. OLAP_TABLE, described in

Chapter 12, uses object technology to present the contents of the workspace in table
format

The AW DI MENSI ON_CREATE_ACCESS procedure creates a separate ET-style view
for each dimension hierarchy. Each view has a column for each level and level
attribute participating in the hierarchy. It also contains grouping ID columns and ET
key columns as described in Table 9-2, "Dimension View Columns" on page 9-5.

See Also: "Procedure: Create SQL Access to the Analytic

Workspace" on page 9-4 and "Column Structure of Dimension
Views" on page 9-5.

16-6 Oracle9i OLAP User’s Guide

Summary of CWM2_OLAP_AW_CREATE Subprograms

Syntax

Parameters

Usage Notes

AW DI MENSI ON_CREATE_ACCESS (

di mensi on_owner IN VARCHAR?,
di mensi on_name IN VARCHAR?,
aw_owner IN VARCHAR?,
aw_nane IN VARCHARZ,
prefix IN VARCHARZ,
access_type IN VARCHARZ,
script_directory IN VARCHARZ,
script_name IN VARCHAR2);

Table 16—7 AW_DIMENSION_CREATE_ACCESS Procedure Parameters

Parameter

Description

di nensi on_owner
di nensi on_nane
aw_owner
aw_nane

prefix

access_type

script_directory

script _nane

Owner of the OLAP Catalog dimension.
Name of the OLAP Catalog dimension.
Owner of the analytic workspace.
Name of the analytic workspace.

Prefix to be applied to the name of the ADT, the name of the
table of ADTs, and the name of the view. See Usage Notes.

How the view will be accessed. Examples are straight SQL,
OLAP API], and Discoverer. This argument is not currently
used.

The directory that will contain the script.

The script that will generate the views.

The script creates an ADT (abstract data type) that encapsulates multidimensional
data in the analytic workspace, a table of the ADTs, and a view of the table. The
ADT, table, and view are named according to specific rules.

The ADT name is the concatenation of the user-supplied prefix, the first five
characters of the dimension owner, the first five characters of the dimension name,
and the suffix OBJ. The following name identifies an ADT for the Product
dimension owned by SH, with a prefix of nydi m

nmydi m sh_produ_QOBJ

CWM2_OLAP_AW_CREATE 16-7

AW_CUBE_CREATE Procedure

The table of ADT name is like the name of the ADT, but with the suffix TBL. For
example,

nmydi m sh_produ_TBL
The view name is similarly constructed, but it contains additional information: the
first five characters of the hierarchy name and a hierarchy sequence number. The

hierarchy sequence number uniquely identifies each view, starting with one. The
following name identifies the first view of the Product dimension owned by SH.

nmydi m sh_produ_std_1 view

AW _CUBE_CREATE Procedure

This procedure creates the containers within an analytic workspace to hold an
OLAP Catalog cube.

The OLAP Catalog cube must conform to the requirements specified in "Basic Star
or Snowflake Schema" on page 5-4.

Syntax
AW CUBE_CREATE (
aw_owner IN VARCHARZ,
aw_nane IN VARCHARZ,
cube_owner IN VARCHARZ,
cube_nane IN VARCHAR?);
Parameters

Table 16-8 AW_CUBE_CREATE Procedure Parameters

Parameter Description

aw_owner Owner of the analytic workspace.
aw_narne Name of the analytic workspace.
cube_owner Owner of the OLAP Catalog cube.
cube_nane Name of the OLAP Catalog cube.

16-8 Oracle9i OLAP User’s Guide

Summary of CWM2_OLAP_AW_CREATE Subprograms

AW_CUBE_DEFINE_LOAD Procedure

This procedure creates a load definition for an OLAP Catalog cube. The load
definition specifies the data to load from the fact table and how to aggregate the
data within the analytic workspace.

The load definition is used by AW CUBE_REFRESH

Syntax
AW CUBE_DEFI NE_LOAD (
cube_owner IN VARCHARZ,
cube_name IN VARCHARZ,
| oad_name IN VARCHAR?,
| oad_type IN VARCHAR2);
Parameters

Table 16-9 AW_CUBE_DEFINE_LOAD Procedure Parameters

Parameter Description

cube_owner Owner of the OLAP Catalog cube.

cube_nane Name of the OLAP Catalog cube.

| oad_name Name of a load definition.

| oad_type Type of data load. This argument is not used in the current
release.

AW _CUBE_FILTER _LOAD Procedure

This procedure creates a SQL WHERE clause to be added to a load definition for a
cube. The WHERE clause specifies which rows should be loaded from the fact table
to the analytic workspace.

Syntax
AW CUBE_FI LTER LQAD (
cube_owner IN VARCHARZ,
cube_nane IN VARCHAR?,
| oad_name IN VARCHAR2
fact _tabl e_owner IN VARCHARZ,
fact _tabl e_name IN VARCHAR?,
where_cl ause IN VARCHAR?);

CWM2_OLAP_AW_CREATE 16-9

AW_CUBE_MEASURE_LOAD Procedure

Parameters

Table 16-10 AW_CUBE_FILTER_LOAD Procedure Parameters

Parameter Description

cube_owner Owner of the OLAP Catalog cube.

cube_nane Name of the OLAP Catalog cube.

| oad_nane Name of a load definition.

fact _tabl e_owner Owner of the fact table that underlies this OLAP Catalog
cube.

fact _tabl e_nane Name of the fact table that underlies this OLAP Catalog cube

wher e_cl ause A SQL WHERE clause that specifies which rows to load from
the fact table.

AW_CUBE_MEASURE_LOAD Procedure

This procedure specifies a measure to load from the fact table to the analytic
workspace. The load instructions are added to load definition created by AW CUBE_

DEFI NE_LQAD.
Syntax
AW CUBE_NEASURE_LOAD (
cube_owner IN VARCHAR?,
cube_nane IN VARCHAR?,
nmeasur e_nane IN VARCHAR2
| oad_name IN VARCHAR?);
Parameters

Table 16-11 AW_CUBE_MEASURE_LOAD Procedure Parameters

Parameter Description

cube_owner Owner of the OLAP Catalog cube.
cube_nane Name of the OLAP Catalog cube.
neasur e_nane Name of one of the cube’s measures.
| oad_name Name of a load definition.

16-10 Oracle9i OLAP User’s Guide

Summary of CWM2_OLAP_AW_CREATE Subprograms

AW _CHOOSE LEVEL_TUPLES Procedure

Syntax

Parameters

This procedure creates a table listing all the level combinations associated with a
cube.

The table, SYS. O apTablLevel s, has columns for each of the cube’s dimensions.
The rows contain the level names for the dimensions. By default, all the levels are
selected for aggregation within the analytic workspace.

If you want to specify partial aggregation, you must edit the table. Uncheck each
level for which summary data should not be stored.

Once you have established the table of level tuples for a cube, you can call AW
DEFI NE_AGG_PLAN to define a set of aggregation rules for a given load definition.

AW CHOOSE_LEVEL_TUPLES (
cube_owner IN VARCHARZ,
cube_name IN VARCHAR?);

Table 16-12 AW_CHOOSE_LEVEL_TUPLES Procedure Parameters

Parameter Description
cube_owner Owner of the OLAP Catalog cube.
cube_nane Name of the OLAP Catalog cube.

AW _DEFINE_AGG_PLAN Procedure

Syntax

This procedure reads a table of level combinations for a cube and defines an
aggregation plan for a cube load definition.

Before calling this procedure, call AW CHOOSE_LEVEL_TUPLES to create the table
SYS. A apTabLevel s. To specify partial aggregation, you must edit this table
before calling AW DEFI NE_AGG_PLAN.

AW DEFI NE_AGG _PLAN (

cube_owner IN VARCHAR?,
cube_nane IN VARCHAR?,
| oad_name IN VARCHAR2);

CWM2_OLAP_AW_CREATE 16-11

AW_CUBE_REFRESH Procedure

Parameters

Table 16-13 AW_DEFINE_AGG_PLAN Procedure Parameters

Parameter Description

cube_owner Owner of the OLAP Catalog cube.
cube_nane Name of the OLAP Catalog cube.
| oad_nane Name of a load definition.

AW _CUBE_REFRESH Procedure

This procedure uses a load definition to load data from a fact table into an analytic
workspace. Unless a filter criteria was established for the data load, AW CUBE _
REFRESH loads all the data from the fact table.

If an aggregation plan was established for this data load, AW CUBE_REFRESH
aggregates the data to the specified level. Otherwise, it fully aggregates the data
within the analytic workspace.

Syntax
AW CUBE_REFRESH (
aw_owner IN VARCHARZ,
aw_namne IN VARCHAR?,
cube_owner IN VARCHAR?,
cube_nane IN VARCHAR?,
| oad_name I'N VARCHAR?) ;
Parameters

Table 16-14 AW_CUBE_REFRESH Procedure Parameters

Parameter Description

aw_owner Owner of the analytic workspace.
aw_narne Name of the analytic workspace.
cube_owner Owner of the cube.

cube_nane Name of the cube.

| oad_nane Name of the load definition.

16-12 Oracle9i OLAP User’s Guide

Summary of CWM2_OLAP_AW_CREATE Subprograms

AW _CUBE_CREATE_ACCESS Procedure

Syntax

Parameters

The AW CUBE_CREATE_ACCESS procedure creates a script that you can run to
generate fact views of AW cubes.

The views contain calls to the OLAP_TABLE function. OLAP_TABLE, described in

Chapter 12, uses object technology to present the contents of the workspace in table
format

The script created by AW CUBE_CREATE_ACCESS generates a fully solved fact view
for every dimension/hierarchy of the cube. Each view has a column for each of the
cube’s measures. It also contains a grouping ID column and an ET key column for
each dimension to link the fact view with the associated dimension views.

See Also: "Procedure: Create SQL Access to the Analytic
Workspace" and Table 94, "Fact View Columns" on page 9-7.

AW CUBE_CREATE_ACCESS (

cube_owner IN VARCHAR?,
cube_nane IN VARCHAR?,
aw_owner IN VARCHAR?,
aw_nane IN VARCHARZ,
prefix IN VARCHARZ,
access_type IN VARCHARZ,
script_directory IN VARCHARZ,
script_name IN VARCHAR?);

Table 16-15 AW_CUBE_CREATE_ACCESS Procedure Parameters

Parameter Description

cube_owner Owner of the OLAP Catalog cube.

cube_nane Name of the OLAP Catalog cube.

aw_owner Owner of the analytic workspace.

aw_narne Name of the analytic workspace.

prefix Prefix to be applied to the name of the ADT, the name of the

table of ADTs, and the name of the view. See Usage Notes.

CWM2_OLAP_AW_CREATE 16-13

AW_CUBE_CREATE_ACCESS Procedure

Table 16-15 (Cont.) AW_CUBE_CREATE_ACCESS Procedure Parameters

Parameter Description

access_type How the view will be accessed. Examples are straight SQL,
OLAP API, and Discoverer. This argument is not currently
used.

script_directory The directory that will contain the script.

scri pt_nane The script that will generate the views.

Usage Notes

The script creates an ADT (abstract data type) that encapsulates multidimensional
data in the analytic workspace, a table of the ADTs, and a view of the table. The
ADT, table, and view are named according to specific rules.

The ADT name is the concatenation of the user-supplied prefix, the first five
characters of the cube owner, the first five characters of the cube name, and the
suffix OBJ. The following name identifies an ADT for the Sales cube owned by SH,
with a prefix of nmydi m

nydi m sh_sal es_COBJ

The table of ADT name is like the name of the ADT, but with the suffix TBL. For
example,

nmydi m sh_sal es_TBL

The view name is similarly constructed, but it contains an additional sequence

number that uniquely identifies the view. The following name identifies the first
view of the Sales cube owned by SH, with a prefix of nydi m

nydi m sh_sal es_1_view

16-14 Oracle9i OLAP User’s Guide

17

CWM2_OLAP_CUBE

The CWWM2_OLAP_CUBE package provides procedures for creating, dropping, and
locking cubes. It also provides procedures for setting general properties of cubes.

See Also: Chapter 13, "Using the OLAP Catalog Metadata APIs"
This chapter discusses the following topics:
« Understanding Cubes

« Summary of CWM2_OLAP_CUBE Subprograms
« Example: Creating a Cube

CWM2_OLAP_CUBE 17-1

Understanding Cubes

Understanding Cubes

A cube is an OLAP metadata entity. This means that it is a logical object, identified
by name and owner, within the OLAP Catalog.

A cube is a multidimensional framework to which you can assign measures. A
measure represents data stored in fact tables. The fact tables may be relational tables
or views. The views may reference data stored in analytic workspaces. Cubes are
fully described in "OLAP Metadata Model" on page 4-8.

Use the procedures in the CWW2_OLAP_CUBE package to create, drop, and lock
cubes, to associate dimensions with cubes, and to specify descriptive information
for display purposes.

You must create the cube before using the CWW2_OLAP_MEASURE package to create
the cube’s measures.

Summary of CWM2_OLAP_CUBE Subprograms

Table 17-1 CWM2_OLAP_CUBE Subprograms

Subprogram Description

ADD_DI MENSI ON_TO_CUBE Adds a dimension to a cube.
Procedure on page 17-3

CREATE_CUBE Procedure on Creates a cube.

page 17-4

DROP_CUBE Procedure on Drops a cube.

page 17-5

LOCK_CUBE Procedure on Locks a cube’s metadata for update.
page 17-6

REMOVE_DI MENSI ON_FROM_ Removes a dimension from a cube.
CUBE Procedure on

page 17-6

SET_CUBE_NAME Procedure Sets the name of a cube.
on page 17-7

SET_DEFAULT_CUBE DI M_ Sets the default calculation hierarchy for a dimension of
CALC HI ER Procedure on the cube.
page 17-8

SET_DESCRI PTI ON Procedur e Sets the description for a cube.
on page 17-9

17-2 Oracle9i OLAP User’s Guide

Summary of CWM2_OLAP_CUBE Subprograms

Table 17-1 (Cont.) CWM2_OLAP_CUBE Subprograms

Subprogram Description

SET_DI SPLAY_NANME
Procedure on page 17-10

SET_MW_SUMVARY_CODE
Procedure on page 17-11

SET_SHORT_DESCRI PTI ON
Procedure on page 17-12

Sets the display name for a cube.

Sets the format for materialized views associated with a
cube.

Sets the short description for a cube.

ADD DIMENSION_TO CUBE Procedure

This procedure adds a dimension to a cube.

Syntax

Parameters

Exceptions

ADD DI MENS| ON_TO CUBE (

cube_owner IN
cube_name IN
di mensi on_owner IN
di mensi on_name IN

VARCHAR?,
VARCHAR?,
VARCHAR?,
VARCHAR?) ;

Table 17-2 ADD_DIMENSION_TO_CUBE Procedure Parameters

Parameter Description

cube_owner Owner of the cube.

cube_nane Name of the cube.

di nensi on_owner Owner of the dimension to be added to the cube.
di nensi on_nane Name of the dimension to be added to the cube.

Table 17-3 ADD_DIMENSION_TO_CUBE Procedure Exceptions

Exception Descripti

on

no_access_privil eges User do

es not have the necessary privileges. User must be the

owner and have the OLAP_DBA role.

CWM2_OLAP_CUBE 17-3

CREATE_CUBE Procedure

Table 17-3 (Cont.) ADD_DIMENSION_TO_CUBE Procedure Exceptions

Exception Description

cube_not _found Cube not found.

di nensi on_not _found Dimension not found.

CREATE_CUBE Procedure

This procedure creates a new cube in the OLAP Catalog.

Descriptions and display properties must also be established as part of cube
creation. Once the cube has been created, you can override these properties by
calling other procedures in this package.

Syntax
CREATE_CUBE (
cube_owner IN VARCHAR?,
cube_nane IN VARCHAR?,
di spl ay_nane IN VARCHARZ,
short _description IN VARCHARZ,
description IN VARCHAR?);
Parameters

Table 17-4 CREATE_CUBE Procedure Parameters

Parameter Description

cube_owner Owner of the cube.
cube_nane Name of the cube.

di spl ay_nane Display name for the cube.
short _description Short description of the cube.
descri ption Description of the cube.

17-4 Oracle9i OLAP User’s Guide

Summary of CWM2_OLAP_CUBE Subprograms

Exceptions

Table 17-5 CREATE_CUBE Procedure Exceptions

Exception Description

no_access_privil eges User does not have the necessary privileges. User must
be the owner and have the OLAP_DBA role.

cube_al ready_exi sts Cube already exists.

DROP_CUBE Procedure

Syntax

Parameters

Exceptions

This procedure drops a cube from the OLAP 2 Catalog.

Note: When a cube is dropped, its associated measures are also
dropped. However, the cube’s dimensions are not dropped. They
might be mapped within the context of a different cube.

DROP_CUBE (
cube_owner IN VARCHAR?,
cube_name IN VARCHAR?);

Table 17-6 DROP_CUBE Procedure Parameters

Parameter Description
cube_owner Owner of the cube.
cube_nane Name of the cube.

Table 17-7 DROP_CUBE Procedure Exceptions

Exception Description

no_access_privil eges User does not have the necessary privileges. User must
be the owner and have the OLAP_DBA role.

cube_not _found Cube not found.

CWM2_OLAP_CUBE 17-5

LOCK_CUBE Procedure

LOCK_CUBE Procedure

This procedure locks the cube’s metadata for update by acquiring a database lock
on the row that identifies the cube in the CWWR model table.

Syntax
LOCK_CUBE (
cube_owner IN VARCHARZ,
cube_name IN VARCHAR2.
wait_for | ock IN BOOLEAN DEFAULT FALSE);
Parameters
Table 17-8 LOCK_CUBE Procedure Parameters
Parameter Description
cube_owner Owner of the cube.
cube_nane Name of the cube.
wai t _for _|ock (Optional) Whether or not to wait for the cube to be available
when it is already locked by another user. If you do not specify
a value for this parameter, the procedure does not wait to
acquire the lock.
Exceptions

Table 17-9 LOCK_CUBE Procedure Exceptions

Exception Description

no_access_pri vil eges User does not have the necessary privileges. User must be the
owner and have the OLAP_DBA role.

cube_not _found Cube not found.

REMOVE_DIMENSION_FROM_CUBE Procedure

This procedure removes a dimension from a cube.

17-6 Oracle9i OLAP User’s Guide

Summary of CWM2_OLAP_CUBE Subprograms

Syntax
REMOVE_DI MENSI ON_FROM CUBE (
cube_owner IN VARCHAR?,
cube_nane IN VARCHAR?,
di mensi on_owner IN VARCHARZ,
di mensi on_nane IN VARCHAR?) ;
Parameters
Table 17-10 REMOVE_DIMENSION_FROM_CUBE Procedure Parameters
Parameter Description
cube_owner Owner of the cube.
cube_nane Name of the cube.
di mensi on_owner Owner of the dimension to be removed from the cube.
di mensi on_namne Name of the dimension to be removed from the cube.
Exceptions

Table 17-11 REMOVE_DIMENSION_FROM_CUBE Procedure Exceptions

Exception Description

no_access_pri vil eges User does not have the necessary privileges. User must be the
owner and have the OLAP_DBA role.

cube_not _found Cube not found.

di nensi on_not _found Dimension not found.

SET CUBE_NAME Procedure

This procedure sets the name for a cube.

CWM2_OLAP_CUBE 17-7

SET_DEFAULT_CUBE_DIM_CALC_HIER Procedure

Syntax
SET_CUBE_NAME (
cube_owner IN VARCHAR?,
cube_name IN VARCHAR?,
set _cube_nane IN VARCHAR2);
Parameters
Table 17-12 SET_CUBE_NAME Procedure Parameters
Parameter Description
cube_owner Owner of the cube.
cube_nane Original name of the cube.
set _cube_nane New name for the cube.
Exceptions

Table 17-13 SET_CUBE_NAME Procedure Exceptions

Exception Description

no_access_privil eges User does not have the necessary privileges. User must be
the owner and have the OLAP_DBA role.

cube_not _found Cube not found.

SET_DEFAULT_CUBE_DIM_CALC_HIER Procedure

This procedure sets the default calculation hierarchy for a dimension of this cube.

17-8 Oracle9i OLAP User’s Guide

Summary of CWM2_OLAP_CUBE Subprograms

Syntax
SET_DEFAULT _CUBE DI M CALC H ER (
cube_owner IN VARCHAR?,
cube_nane IN VARCHAR?,
di nensi on_owner IN VARCHAR?,
dinension_nane IN VARCHAR?,
hierarchy_name IN VARCHAR?);
Parameters
Table 17-14 SET_DEFAULT_CUBE_DIM_CALC_HIER Procedure Parameters
Parameter Description
cube_owner Owner of the cube.
cube_owner Name of the cube.
di nensi on_owner Owner of the dimension.
di nensi on_nane Name of the dimension.
hi erar chy_nane Name of the hierarchy to be used by default for this
dimension.
Exceptions

Table 17-15 SET_DEFAULT_CUBE_DIM_CALC_HIER Procedure Exceptions

Exception Description

no_access_privil eges User does not have the necessary privileges. User must
be the owner and have the OLAP_DBA role.

cube_not _found Cube not found.

SET DESCRIPTION Procedure

This procedure sets the description for a cube.

CWM2_OLAP_CUBE 17-9

SET_DISPLAY_NAME Procedure

Syntax
SET_DESCRI PTI ON (
cube_owner IN VARCHAR?,
cube_name IN VARCHAR?,
description IN VARCHAR2);
Parameters
Table 17-16 SET_DESCRIPTION Procedure Parameters
Parameter Description
cube_owner Owner of the cube.
cube_nane Name of the cube.
description Description of the cube.
Exceptions

Table 17-17 SET_DESCRIPTION Procedure Exceptions

Exception Description

no_access_privil eges User does not have the necessary privileges. User must
be the owner and have the OLAP_DBA role.

cube_not _found Cube not found.

SET DISPLAY NAME Procedure

This procedure sets the display name for a cube.

17-10 Oracle9i OLAP User’s Guide

Summary of CWM2_OLAP_CUBE Subprograms

Syntax

Parameters

Exceptions

SET DI SPLAY_NAME (
cube_owner IN VARCHAR?,
cube_nane IN VARCHAR?,
display_name IN VARCHAR?);

Table 17-18 SET_DISPLAY_NAME Procedure Parameters

Parameter Description

cube_owner Owner of the cube.
cube_nane Name of the cube.

di spl ay_name Display name for the cube.

Table 17-19 SET_DISPLAY_NAME Procedure Exceptions

Exception Description

no_access_privil eges User does not have the necessary privileges. User must be
the owner and have the OLAP_DBA role.

cube_not _found Cube not found.

SET _MV_SUMMARY_CODE Procedure

This procedure specifies the form of materialized views for this cube. Materialized
views may be in Grouping Set (gr oupi ngset) or Rolled Up (r ol | up) form.

In a materialized view in Rolled Up form, all the dimension key columns are
populated, and data may only be accessed when its full lineage is specified.

In a materialized view in Grouping Set form, dimension key columns may contain
null values, and data may be accessed simply by specifying one or more levels.

CWM2_OLAP_CUBE 17-11

SET_SHORT_DESCRIPTION Procedure

Syntax
SET_M/_SUMVARY_CODE (
cube_owner IN VARCHAR?,
cube_name IN VARCHAR?,
sunmary_code IN VARCHAR2);
Parameters
Table 17-20 SET_MV_SUMMARY_CODE Procedure Parameters
Parameter Description
cube_owner Owner of the cube.
cube_nane Name of the cube.
sunmary_code One of the following case-insensitive values:
« rollup,forRolled Up form.
= groupi ngset, for Grouping Set form.
Exceptions

Table 17-21 SET_MV_SUMMARY_CODE Procedure Exceptions

Exception Description

no_access_privil eges User does not have the necessary privileges. User must
be the owner and have the OLAP_DBA role.

cube_not _found Cube not found.

SET SHORT DESCRIPTION Procedure

This procedure sets the short description for a cube.

17-12 Oracle9i OLAP User’s Guide

Example: Creating a Cube

Syntax

Parameters

Exceptions

SET_DESCR! PTI ON (

cube_owner IN VARCHAR?,
cube_nane IN VARCHAR?,
short _description IN VARCHAR?) ;

Table 17-22 SET_SHORT_DESCRIPTION Procedure Parameters

Parameter Description

cube_owner Owner of the cube.
cube_nane Name of the cube.
short_description Short description of the cube.

Table 17-23 SET_SHORT_DESCRIPTION Procedure Exceptions

Exception Description

no_access_privil eges User does not have the necessary privileges. User must
be the owner and have the OLAP_DBA role.

cube_not _found Cube not found.

Example: Creating a Cube
The following statements drop the cube SALES CUBE, recreate it, and add the

dimensions TI ME_DI M GEOG_DI M and PRODUCT_DI M

CWM2_OLAP_CUBE 17-13

Example: Creating a Cube

Dropping the cube removes the cube entity, along with its measures, from the
OLAP Catalog. However, dropping the cube does not cause the cube’s dimensions
to be dropped.

execute cwr2_ol ap_cube. drop_cube(’ JSM TH , ' SALES CUBE');
execute cwr2_ol ap_cube. create_cube

("JSMTH, 'SALES CUBE', 'Sales’', 'Sales Cube',

' Sal es di nensi oned over geography, product, and time');

execute cwr2_ol ap_cube. add_di nensi on_to_cube

("JSMTH, "SALES CUBE, 'JSMTH, 'TIMEDM);
execute cwr_ol ap_cube. add_di nensi on_t o_cube

("JSMTH, "SALES CUBE, 'JSMTH, 'GECGG DIM);
execute cwr2_ol ap_cube. add_di nensi on_to_cube

("JSMTH, 'SALES CUBE, 'JSMTH, 'PRODUCT DIM);

17-14 Oracle9i OLAP User’s Guide

18

CWM2_OLAP DIMENSION

The CWWR_QOLAP_DI MENSI ON package provides procedures for creating, dropping,
and locking dimensions. It also provides procedures for setting general dimension
properties.

See Also: Chapter 13, "Using the OLAP Catalog Metadata APIs".
This chapter discusses the following topics:
« Understanding Dimensions

« Summary of CWM2_OLAP_DIMENSION Subprograms
« Example: Creating a CWM2 Dimension

CWM2_OLAP_DIMENSION 18-1

Understanding Dimensions

Understanding Dimensions

A dimension is an OLAP metadata entity. This means that it is a logical object,
identified by name and owner, within the OLAP Catalog. Logical OLAP dimensions
are fully described in "OLAP Metadata Model" on page 4-8.

Note: Dimensions in CWMR map directly to columns in dimension
tables and have no relationship to Oracle database dimension
objects.

Use the procedures in the CWW2_QLAP_DI MENSI ON package to create, drop, and
lock CWW2 dimension entities and to specify descriptive information for display
purposes. To fully define a CWWR dimension, follow the steps listed in "Constructing
a Dimension" on page 13-2.

Summary of CWM2_OLAP_DIMENSION Subprograms

Table 18-1 CWM2_OLAP_DIMENSION Subprograms

Subprogram Description

CREATE_DI MENSI ON Creates a dimension.
Procedure on page 18-3

DROP_DI MENSI ON Procedure Drops a dimension.
on page 18-4

LOCK_DI MENSI ON Procedure Locks the dimension metadata for update.
on page 18-5

SET_DEFAULT_DI SPLAY_ Sets the default hierarchy for a dimension.
HI ERARCHY Pr ocedure on
page 18-6

SET_DESCRI PTI ONProcedure Sets the description for a dimension.
on page 18-7

SET_DI MENSI ON_NAMVE Sets the name of a dimension.
Procedure on page 18-7
SET_DI SPLAY_NANME Sets the display name for a dimension.

Procedure on page 18-8

SET_PLURAL_NAME Procedure Sets the plural name for a dimension.
on page 18-9

18-2 Oracle9i OLAP User’s Guide

Summary of CWM2_OLAP_DIMENSION Subprograms

Table 18-1 (Cont.) CWM2_OLAP_DIMENSION Subprograms

Subprogram Description

SET_SHORT_DESCRI PTI ON Sets the short description for a dimension.
Procedure on page 18-10

CREATE_DIMENSION Procedure

Syntax

Parameters

This procedure creates a new dimension entity in the OLAP Catalog.

By default the new dimension is a normal dimension, but you can specify the value
Tl ME for the di mensi on_t ype parameter to create a time dimension.

Descriptions and display properties must also be established as part of dimension
creation. Once the dimension has been created, you can override these properties by
calling other procedures in this package.

CREATE_DI MENSI ON (

di mensi on_owner IN VARCHAR?,
di mensi on_name IN VARCHAR2,
di spl ay_nane IN VARCHARZ,
pl ural _nane IN VARCHARZ,
short _description IN VARCHARZ,
description IN VARCHAR?,
di mensi on_type IN VARCHAR2 DEFAULT NULL);

Table 18-2 CREATE_DIMENSION Procedure Parameters

Parameter Description

di nensi on_owner Owner of the dimension.

di nensi on_nane Name of the dimension.

di spl ay_nane Display name for the dimension.

pl ural _name Plural name for the dimension.
short _descri ption Short description of the dimension.
descri ption Description of the dimension.

CWM2_OLAP_DIMENSION 18-3

DROP_DIMENSION Procedure

Table 18-2 (Cont.) CREATE_DIMENSION Procedure Parameters

Parameter Description

di nensi on_t ype (Optional) Type of the dimension. Specify the value Tl ME to
create a time dimension. If you do not specify this parameter,
the dimension is created as a normal dimension.

Exceptions

Table 18-3 CREATE_DIMENSION Procedure Exceptions

Exception Description

no_access_privil eges User does not have the necessary privileges. User must
be the owner and have the OLAP_DBA role.

di nensi on_al r eady_exi sts Cannot create dimension. Dimension already exists.

DROP_DIMENSION Procedure

This procedure drops a dimension entity from the OLAP Catalog. All related levels,
hierarchies, and dimension attributes are also dropped.

Syntax
DROP_DI MENSI ON (
di mensi on_owner IN VARCHAR?,
di mensi on_nane IN VARCHAR?);
Parameters

Table 18-4 DROP_DIMENSION Procedure Parameters

Parameter Description
di nensi on_owner Owner of the dimension.
di nensi on_nane Name of the dimension.

18-4 Oracle9i OLAP User’s Guide

Summary of CWM2_OLAP_DIMENSION Subprograms

Exceptions

Table 18-5 DROP_DIMENSION Procedure Exceptions

Exception Description

no_access_privil eges User does not have the necessary privileges. User must
be the owner and have the OLAP_DBA role.

di nensi on_not _found Dimension not found.

LOCK_DIMENSION Procedure

Syntax

Parameters

Exceptions

This procedure locks the dimension metadata for update by acquiring a database
lock on the row that identifies the dimension in the CWVR model table.

LOCK_Di MENSI ON (

di mensi on_owner IN VARCHAR?,
di mensi on_nane IN VARCHAR2.
wait _for_| ock IN BOOLEAN DEFAULT FALSE);

Table 186 LOCK_DIMENSION Procedure Parameters

Parameter Description

di nensi on_owner Owner of the dimension.

di nensi on_nane Name of the dimension.

wai t _for_|ock (Optional) Whether or not to wait for the dimension to be

available when it is already locked by another user. If you do
not specify a value for this parameter, the procedure does not
wait to acquire the lock.

Table 18-7 LOCK_DIMENSION Procedure Exceptions

Exception Description

no_access_pri vi |l eges User does not have the necessary privileges. User must be the
owner and have the OLAP_DBA role.

CWM2_OLAP_DIMENSION 18-5

SET_DEFAULT _DISPLAY_HIERARCHY Procedure

Table 18-7 (Cont.) LOCK_DIMENSION Procedure Exceptions

Exception Description

di nensi on_not _found Dimension not found.

SET_DEFAULT_DISPLAY_HIERARCHY Procedure

Syntax

Parameters

Exceptions

This procedure sets the default hierarchy to be used for display purposes.

SET_DEFAULT DI SPLAY_HI ERARCHY (

di mensi on_owner IN VARCHAR?,
di mensi on_name IN VARCHAR?,
hi erarchy_name IN VARCHAR?);

Table 18-8 SET_DEFAULT_DISPLAY_HIERARCHY Procedure Parameters

Parameter Description

di nensi on_owner Owner of the dimension.

di nensi on_nane Name of the dimension.

hi er ar chy_nane Name of one of the dimension’s hierarchies.

Table 18-9 SET_DEFAULT_DISPLAY_HIERARCHY Procedure Exceptions

Exception Description

no_access_pri vi |l eges User does not have the necessary privileges. User must be the
owner and have the OLAP_DBA role.

di mensi on_not _found Dimension not found.

hi erarchy_not _found This hierarchy not found for this dimension.

18-6 Oracle9i OLAP User’s Guide

Summary of CWM2_OLAP_DIMENSION Subprograms

SET DESCRIPTION Procedure

This procedure sets the description for a dimension.

Syntax
SET_DESCRI PTI ON (
di mensi on_owner IN VARCHAR?,
di mensi on_name IN VARCHARZ,
description IN VARCHARZ);
Parameters
Table 18-10 SET_DESCRIPTION Procedure Parameters
Parameter Description
di nensi on_owner Owner of the dimension.
di nensi on_nane Name of the dimension.
descri ption Description of the dimension.
Exceptions

Table 18-11 SET_DESCRIPTION Procedure Exceptions

Exception Description

no_access_privil eges User does not have the necessary privileges. User must
be the owner and have the OLAP_DBA role.

di mensi on_not _f ound Dimension not found.

SET DIMENSION NAME Procedure

This procedure sets the name for a dimension.

CWM2_OLAP_DIMENSION 18-7

SET_DISPLAY_NAME Procedure

Syntax

SET_DI MENSI ON_NAME (
di mensi on_owner IN VARCHAR?,
di mensi on_name IN VARCHAR?,
set _di mensi on_nane IN VARCHAR?);

Parameters

Table 18-12 SET_DIMENSION_NAME Procedure Parameters

Parameter Description

di nensi on_owner Owner of the dimension.
di nensi on_narne Original name of the dimension.

set _di nensi on_nane New name for the dimension.

Exceptions

Table 18-13 SET_DIMENSION_NAME Procedure Exceptions

Exception Description

no_access_privil eges User does not have the necessary privileges. User must be
the owner and have the OLAP_DBA role.

di mensi on_not _f ound Dimension not found.

SET DISPLAY NAME Procedure

This procedure sets the display name for a dimension.

18-8 Oracle9i OLAP User’s Guide

Summary of CWM2_OLAP_DIMENSION Subprograms

Syntax

SET DI SPLAY_NAME (
di mensi on_owner IN VARCHAR?,
di mensi on_name IN VARCHAR?,
di spl ay_nane IN VARCHARZ);

Parameters

Table 18-14 SET_DISPLAY_NAME Procedure Parameters

Parameter Description

di nensi on_owner Owner of the dimension.
di nensi on_nane Name of the dimension.

di spl ay_nane Display name for the dimension.

Exceptions

Table 18-15 SET_DISPLAY_NAME Procedure Exceptions

Exception Description

no_access_privil eges User does not have the necessary privileges. User must be
the owner and have the OLAP_DBA role.

di nensi on_not _found Dimension not found.

SET PLURAL_NAME Procedure

This procedure sets the plural name of a dimension.

CWM2_OLAP_DIMENSION 18-9

SET_SHORT_DESCRIPTION Procedure

Syntax
SET_PLURAL_NAME (
di mensi on_owner IN VARCHAR?,
di mensi on_nane IN VARCHAR?,
pl ural _name IN VARCHAR?);
Parameters
Table 18-16 SET_PLURAL_NAME Procedure Parameters
Parameter Description
di nensi on_owner Owner of the dimension.
di nensi on_nane Name of the dimension.
pl ural _nane Plural name for the dimension.
Exceptions

Table 18-17 SET_PLURAL_NAME Procedure Exceptions

Exception Description

no_access_privil eges User does not have privileges to edit the dimension. User
must be the owner or OLAP_DBA.

di mensi on_not _f ound Dimension not found.

SET SHORT DESCRIPTION Procedure

This procedure sets the short description for a dimension.

18-10 Oracle9i OLAP User’s Guide

Example: Creating a CWM2 Dimension

Syntax

Parameters

Exceptions

SET_SHORT_DESCRI PTI ON (

di mensi on_owner IN VARCHAR?,
di mensi on_name IN VARCHAR?,
short _description IN VARCHAR?) ;

Table 18-18 SET_SHORT_DESCRIPTION Procedure Parameters

Parameter Description

di nensi on_owner Owner of the dimension.

di nensi on_nane Name of the dimension.

short _descri ption Short description of the dimension.

Table 18-19 SET_SHORT_DESCRIPTION Procedure Exceptions

Exception Description

no_access_privil eges User does not have the necessary privileges. User must
be the owner and have the OLAP_DBA role.

di nensi on_not _found Dimension not found.

Example: Creating a CWM2 Dimension

The following statement creates a CWWR dimension entity, PRODUCT_DI M in the
JSM THschema. The display name is Pr oduct , and the plural name is Pr oduct s.
The short description is Pr od, and the description is Pr oduct .

execute cwr_ol ap_di mensi on. creat e_di nensi on
("JSMTH, 'PRODUCT_DIM, 'Product', 'Products', 'Prod', 'Product');

The following statements change the short description to Pr oduct and the long
description to Pr oduct Di mensi on.

execute cwr@_ol ap_di mensi on. set _short _description
(*JSMTH, 'PRODUCT DIM, 'Product');

execute cwr2_ol ap_di mensi on. set _descri ption
("JSMTH, 'PRODUCT DIM, 'Product Dinension');

CWM2_OLAP_DIMENSION 18-11

Example: Creating a CWM2 Dimension

18-12 Oracle9i OLAP User’s Guide

19

CWM2_OLAP_DIMENSION_ATTRIBUTE

The CWW2_COLAP_DI MENSI ON_ATTRI BUTE package provides procedures for
creating, dropping, and locking dimension attributes. It also provides procedures
for setting general properties of dimension attributes.

See Also: Chapter 13, "Using the OLAP Catalog Metadata APIs".
This chapter discusses the following topics:
» Understanding Dimension Attributes

« Summary of CWM2_OLAP_DIMENSION_ATTRIBUTE Subprograms

« Example: Creating a Dimension Attribute

CWM2_OLAP_DIMENSION_ATTRIBUTE 19-1

Understanding Dimension Attributes

Understanding Dimension Attributes

A dimension attribute is an OLAP metadata entity. This means that it is a logical
object, identified by name and owner, within the OLAP Catalog.

Dimension attributes define sets of level attributes for a dimension. Dimension
attributes may include level attributes for some or all of the dimension’s levels. For
time dimensions, the dimension attributes end dat e andti me span must be
defined for all levels. Dimension attributes are fully described in "OLAP Metadata
Model" on page 4-8.

Use the procedures in the CWWR_OLAP_DI MENSI ON_ATTRI BUTE package to create,
drop, and lock dimension attributes and to specify descriptive information for
display purposes.

Several dimension attribute names are reserved, because they have special
significance within CWMR. The level attributes comprising a reserved dimension
attribute will be mapped to columns containing specific information. The reserved
dimension attributes are listed in Table 19-1.

Table 19-1 Reserved Dimension Attributes

Dimension Attribute Description

Long Description A long description of the dimension member.

Short Description A short description of the dimension member.

End Date For a time dimension, the last date in a time period. (Required)

Ti me Span For a time dimension, the number of days in a time period.
(Required)

Prior Period For a time dimension, the time period before this time period.

Year Ago Period For a time dimension, the period a year before this time period.

ET Key For an embedded total dimension, the embedded total key,

which identifies the dimension member at the lowest level in a
row of the dimension table.

Parent ET Key For an embedded total dimension, the dimension member that
is the parent of the ET key.

Gouping ID For an embedded total dimension, the grouping ID (GID),
which identifies the hierarchical level for a row of the
dimension table.

Parent Grouping ID Foran embedded total dimension, the dimension member that
is the parent of the grouping ID.

19-2 Oracle9i OLAP User’s Guide

Summary of CWM2_OLAP_DIMENSION_ATTRIBUTE Subprograms

The parent dimension must already exist before you can create dimension attributes
for it. To fully define a dimension, follow the steps listed in "Constructing a
Dimension" on page 13-2.

Summary of CWM2_OLAP_DIMENSION_ATTRIBUTE Subprograms

Table 19-2 CWM2_OLAP_DIMENSION_ATTRIBUTE Subprograms

Subprogram Description

CREATE_DI MENSI ON_ Creates a dimension attribute.
ATTRI BUTE Procedure on

page 19-3

DROP_DI MENSI ON_ATTRI BUTE ~ Drops a dimension attribute.
Procedure on page 19-5

LOCK_DI MENSI ON_ATTRI BUTE Locks the dimension attribute for update.
Procedure on page 19-6

SET_DESCRI PTI ONProcedure Sets the description for a dimension attribute.
on page 19-7

SET_DI MENSI ON_ATTRI BUTE_ Sets the name of a dimension attribute.
NAME Procedure on

page 19-8

SET_DI SPLAY_NAME Sets the display name for a dimension attribute.
Procedure on page 19-9

SET_SHORT_DESCRI PTI ON Sets the short description for a dimension attribute.

Procedure on page 19-10

CREATE_DIMENSION_ATTRIBUTE Procedure

This procedure creates a new dimension attribute.

If the dimension attribute name should be reserved for mapping specific groups of
level attributes, you can set the RESERVED_DI MENSI ON_ATTRI BUTE argument to
TRUE. For more information, see Table 19-1, " Reserved Dimension Attributes".

Descriptions and display properties must also be established as part of dimension
attribute creation. Once the dimension attribute has been created, you can override
these properties by calling other procedures in this package.

CWM2_OLAP_DIMENSION_ATTRIBUTE 19-3

CREATE_DIMENSION_ATTRIBUTE Procedure

Syntax
CREATE_DI MENSI ON_ATTRI BUTE (
di mensi on_owner IN VARCHAR?,
di mensi on_name IN VARCHAR?,
di mensi on_attri bute_name IN VARCHARZ,
di spl ay_nane IN VARCHAR?,
short _description IN VARCHAR?,
description IN VARCHARZ,
reserved_dinension_attribute IN BOOLEAN DEFAULT FALSE);
Parameters
Table 19-3 CREATE_DIMENSION_ATTRIBUTE Procedure Parameters
Parameter Description
di nensi on_owner Owner of the dimension.
di nensi on_nane Name of the dimension.
di nension_attri bute_ Name of the dimension attribute.
nane
di spl ay_name Display name for the dimension attribute.
short_description Short description of the dimension attribute.
descri ption Description of the dimension attribute.
reserved_di nensi on_ Whether or not this is a reserved dimension attribute. By
attribute default, the dimension attribute is not reserved. The reserved
dimension attributes are described in Table 19-1, " Reserved
Dimension Attributes".
Exceptions

Table 19-4 CREATE_DIMENSION_ATTRIBUTE Procedure Exceptions

Exception

Description

no_access_privil eges

di mension_attribute_
al ready_exi sts

User does not have the necessary privileges. User must
be the owner and have the OLAP_DBA role.

Dimension attribute already exists.

19-4 Oracle9i OLAP User’s Guide

Summary of CWM2_OLAP_DIMENSION_ATTRIBUTE Subprograms

DROP_DIMENSION_ATTRIBUTE Procedure

This procedure drops a dimension attribute.

Syntax
DROP_DI MENSI ON_ATTRI BUTE (
di mensi on_owner IN VARCHAR?,
di mensi on_name IN VARCHAR?,
di mension_attribute_name IN VARCHAR?);
Parameters
Table 19-5 DROP_DIMENSION_ATTRIBUTE Procedure Parameters
Parameter Description
di nensi on_owner Owner of the dimension.
di nensi on_nane Name of the dimension.
di nension_attri bute_ Name of the dimension attribute.
name
Exceptions

Table 19-6 DROP_DIMENSION_ATTRIBUTE Procedure Exceptions

Exception Description

no_access_privil eges User does not have the necessary privileges. User must
be the owner and have the OLAP_DBA role.

di nensi on_not _found Parent dimension not found.

di nension_attribute_not_ Dimension attribute not found.
f ound

CWM2_OLAP_DIMENSION_ATTRIBUTE 19-5

LOCK_DIMENSION_ATTRIBUTE Procedure

LOCK_DIMENSION_ATTRIBUTE Procedure

This procedure locks the dimension attribute for update by acquiring a database
lock on the row that identifies the dimension attribute in the CWW2 model table.

Syntax
LOCK_DI MENSI ON_ATTR! BUTE (
di mensi on_owner IN VARCHAR?,
di mensi on_name IN VARCHARZ,
di nensi on_attri bute_nane IN VARCHARZ2,
wait_for | ock IN BOOLEAN DEFAULT FALSE);
Parameters
Table 19-7 LOCK_DIMENSION_ATTRIBUTE Procedure Parameters
Parameter Description
di nensi on_owner Owner of the dimension.
di nensi on_nane Name of the dimension.
di nensi on_attri bute_ Name of the dimension attribute.
nanme
wai t _for_|lock (Optional) Whether or not to wait for the dimension attribute
to be available when it is already locked by another user. If you
do not specify a value for this parameter, the procedure does
not wait to acquire the lock.
Exceptions

Table 19-8 LOCK_DIMENSION_ATTRIBUTE Procedure Exceptions

Exception

Description

no_access_privil eges

di nensi on_not _found

di nension_attribute_
not _f ound

User does not have the necessary privileges. User must be the
owner and have the OLAP_DBA role.

Parent dimension not found.

Dimension attribute not found.

19-6 Oracle9i OLAP User’s Guide

Summary of CWM2_OLAP_DIMENSION_ATTRIBUTE Subprograms

SET DESCRIPTION Procedure

This procedure sets the description for a dimension attribute.

Syntax
SET_DESCR! PTI ON (
di mensi on_owner IN VARCHAR?,
di mensi on_name IN VARCHAR?,
di mensi on_attri bute_name IN VARCHARZ,
description IN VARCHAR?);
Parameters
Table 19-9 SET_DESCRIPTION Procedure Parameters
Parameter Description
di nensi on_owner Owner of the dimension.
di nensi on_nane Name of the dimension.
di nensi on_attri bute_name Name of the dimension attribute.
description Description of the dimension attribute.
Exceptions

Table 19-10 SET_DESCRIPTION Procedure Exceptions

Exception Description

no_access_privil eges User does not have the necessary privileges. User must
be the owner and have the OLAP_DBA role.

di nensi on_not _found Parent dimension not found.

di nension_attribute_not_ Dimension attribute not found.
f ound

CWM2_OLAP_DIMENSION_ATTRIBUTE 19-7

SET_DIMENSION_ATTRIBUTE_NAME Procedure

SET_DIMENSION_ATTRIBUTE_NAME Procedure

This procedure sets the name for a dimension attribute.

Syntax
SET_DI MENSI ON_ATTRI BUTE_NAME (
di mensi on_owner IN VARCHARZ,
di mensi on_nane IN VARCHAR?,
di mensi on_attri bute_name IN VARCHARZ,
set _dimensi on_attribute_nane IN VARCHAR?,
reserved_di nension_attribute IN BOOLEAN DEFAULT FALSE);
Parameters
Table 19-11 SET_DIMENSION__ATTRIBUTE_NAME Procedure Parameters
Parameter Description
di nensi on_owner Owner of the dimension.
di nensi on_nane Name of the dimension.
di mensi on_ Original name for the dimension attribute.
attribute_nane
set _di mensi on_ New name for the dimension attribute.
attribute_nane
reserved_ Whether or not this is a reserved dimension attribute. By default,
di mensi on_ the dimension attribute is not reserved.
attribute
Exceptions

Table 19-12 SET_DIMENSION_ATTRIBUTE_NAME Procedure Exceptions

Exception Description

no_access_privil eges User does not have the necessary privileges. User must be
the owner and have the OLAP_DBA role.

di nensi on_not _f ound Parent dimension not found.
di mension_attribute_ Dimension attribute not found.
not found

19-8 Oracle9i OLAP User’s Guide

Summary of CWM2_OLAP_DIMENSION_ATTRIBUTE Subprograms

SET_DISPLAY_NAME Procedure

This procedure sets the display name for a dimension attribute.

Syntax

SET_DI SPLAY_NAME (
di mensi on_owner IN VARCHAR?,
di mensi on_name IN VARCHAR?,
di mensi on_attri bute_name IN VARCHARZ,
di spl ay_nane IN VARCHAR?);

Parameters

Table 19-13 SET_DISPLAY_NAME Procedure Parameters

Parameter Description

di nensi on_owner Owner of the dimension.
di nensi on_nane Name of the dimension.

di nensi on_ Name of the dimension attribute.
attribute_name

di spl ay_name Display name for the dimension attribute.

Exceptions

Table 19-14 SET_DISPLAY_NAME Procedure Exceptions

Exception Description

no_access_privil eges User does not have the necessary privileges. User must be
the owner and have the OLAP_DBA role.

di nensi on_not _found Parent dimension not found.
di mension_attribute_ Dimension attribute not found.
not _f ound

CWM2_OLAP_DIMENSION_ATTRIBUTE 19-9

SET_SHORT_DESCRIPTION Procedure

SET SHORT DESCRIPTION Procedure

This procedure sets the short description for a dimension attribute.

Syntax
SET_SHORT_DESCRI PTI ON (
di mensi on_owner IN VARCHAR2,
di mensi on_name IN VARCHAR2,
di mensi on_attri bute_name IN VARCHARZ,
short _description IN VARCHAR2);
Parameters
Table 19-15 SET_SHORT_DESCRIPTION Procedure Parameters
Parameter Description
di nensi on_owner Owner of the dimension.
di nensi on_nane Name of the dimension.
di nension_attri bute_name Name of the dimension attribute.
short_description Short description of the dimension attribute.
Exceptions

Table 19-16 SET_SHORT_DESCRIPTION Procedure Exceptions

Exception Description

no_access_privil eges User does not have the necessary privileges. User must
be the owner and have the OLAP_DBA role.

di nensi on_not _f ound Parent dimension not found.

di nension_attribute_not_ Dimension attribute not found.
f ound

Example: Creating a Dimension Attribute

The following statement creates a dimension attribute, PRODUCT_DI M_BRAND, for
the PRODUCT_DI Mdimension in the JSM THschema. The display name is Br and.

19-10 Oracle9i OLAP User’s Guide

Example: Creating a Dimension Attribute

The short description is Br and Nane, and the description is Pr oduct Brand
Nare.

execute cwr_ol ap_di mensi on_attribute. create_dinension_attribute
("JSMTH , 'PRODUCT DIM, ' PRODUCT DI M BRAND ,
"Brand’, 'Brand Name', 'Product Brand Nane');

The following statement creates a dimension attribute,’ Short Descri ption’,
for the PRODUCT_DI Mdimension in the JSM THschema. Short Descri ptionis
a reserved dimension attribute.

execute cwr2_ol ap_dimension_attribute.create_dinension attribute
("JSMTH, 'PRODUCT_DIM, 'Short Description’,
"Short Product Names', 'Short Desc Product’,
"Short Nane of Products’, TRUE);

CWM2_OLAP_DIMENSION_ATTRIBUTE 19-11

Example: Creating a Dimension Attribute

19-12 Oracle9i OLAP User’s Guide

20

CWM2_OLAP_HIERARCHY

The CWW2_OLAP_HI ERARCHY package provides procedures for creating, dropping,
and locking hierarchies. It also provides procedures for setting general hierarchy
properties.

See Also: Chapter 13, "Using the OLAP Catalog Metadata APIs".
This chapter discusses the following topics:
= Understanding Hierarchies

= Summary of CWM2_OLAP_HIERARCHY Subprograms
= Example: Creating a Hierarchy

CWM2_OLAP_HIERARCHY 20-1

Understanding Hierarchies

Understanding Hierarchies

A hierarchy is an OLAP metadata entity. This means that it is a logical object,
identified by name and owner, within the OLAP Catalog.

Hierarchies define parent-child relationships between sets of levels in a dimension.
There can be multiple hierarchies associated with a single dimension, and the same
level can be used in multiple hierarchies. Hierarchies are fully described in "OLAP
Metadata Model" on page 4-8.

Use the procedures in the CWW2_OLAP_HI ERARCHY package to create, drop, and
lock hierarchies and to specify descriptive information for display purposes.

The parent dimension must already exist in the OLAP Catalog before you can create
hierarchies for it.

Summary of CWM2_OLAP_HIERARCHY Subprograms

Table 20-1 CWM2_OLAP_HIERARCHY Subprograms

Subprogram Description
CREATE_HI ERARCHY Procedure Creates a hierarchy.
on page 20-2

DROP_HI ERARCHY Pr ocedur e Drops a hierarchy.
on page 20-4

LOCK_HI ERARCHY Pr ocedur e Locks the hierarchy for update.

on page 20-5

SET_DESCRI PTI ON Procedure Sets the description for a hierarchy.

on page 20-6

SET_DI SPLAY_NAME Procedure Sets the display name for a hierarchy.

on page 20-7

SET_H ERARCHY_NAME Sets the name of a hierarchy.
Procedure on page 20-8

SET_SHORT_DESCRI PTI ON Sets the short description for a hierarchy.

Procedure on page 20-9

SET_SOLVED_CODE Procedure Sets the solved code for a hierarchy.
on page 20-10

CREATE_HIERARCHY Procedure

This procedure creates a new hierarchy in the OLAP Catalog.

20-2 Oracle9i OLAP User’s Guide

Summary of CWM2_OLAP_HIERARCHY Subprograms

Syntax

Parameters

You must specify descriptions and display properties as part of hierarchy creation.
Once the hierarchy has been created, you can override these properties by calling
other procedures in the CWW2_CLAP_HI ERARCHY package.

CREATE_H ERARCHY (

di mensi on_owner IN VARCHAR2,
di mensi on_name IN VARCHAR2,
hi erarchy_name IN VARCHARZ,
di spl ay_nane IN VARCHARZ,
short _description IN VARCHARZ,
description IN VARCHAR2,
sol ved_code IN VARCHAR?);

Table 20-2 CREATE_HIERARCHY Procedure Parameters

Parameter

Description

di mensi on_owner

di nensi on_nane

hi er ar chy_nane

di spl ay_nane
short _description

description

Owner of the dimension.

Name of the dimension.

Name of the hierarchy.

Display name for the hierarchy.
Short description of the hierarchy.
Description of the hierarchy.

CWM2_OLAP_HIERARCHY 20-3

DROP_HIERARCHY Procedure

Table 202 (Cont.) CREATE_HIERARCHY Procedure Parameters

Parameter Description

sol ved_code Specifies whether or not the hierarchy includes embedded
totals and whether it is mapped to a level-based dimension
table or a parent-child dimension table. For information
about mapping hierarchies with different solved codes, see
"Joining Fact Tables with Dimension Tables" on page 13-4.

Values for this parameter are:

. UNSOLVED LEVEL- BASED, for a hierarchy that contains
no embedded totals and is stored in a level-based
dimension table

« SOLVED LEVEL- BASED, for a hierarchy that contains
embedded totals, has a grouping ID, and is stored in a
level-based dimension table

« SOLVED VALUE- BASED, for a hierarchy that contains
embedded totals and is stored in a parent-child
dimension table

Exceptions

Table 20-3 CREATE_HIERARCHY Procedure Exceptions

Exception Description

no_access_privil eges User does not have the necessary privileges. User must
be the dimension owner and have the OLAP_DBA role.

di nensi on_not _f ound Parent dimension not found.

hi erarchy_al ready_exi sts This hierarchy already exists for this dimension.

DROP_HIERARCHY Procedure
This procedure drops a hierarchy from the OLAP Catalog.

20-4 Oracle9i OLAP User's Guide

Summary of CWM2_OLAP_HIERARCHY Subprograms

Syntax
DROP_Hl ERARCHY (
di nensi on_owner IN VARCHARZ,
di mensi on_name IN VARCHAR?,
hi er ar chy_nane IN VARCHAR?) ;
Parameters
Table 20-4 DROP_HIERARCHY Procedure Parameters
Parameter Description
di nensi on_owner Owner of the dimension.
di nensi on_nane Name of the dimension.
hi er ar chy_nane Name of the hierarchy.
Exceptions
Table 20-5 DROP_HIERARCHY Procedure Exceptions
Exception Description
no_access_privil eges User does not have the necessary privileges. User must be the
dimension owner and have the OLAP_DBA role.
di nensi on_not _found Parent dimension not found.
hi erarchy_not _found Hierarchy not found.

LOCK_HIERARCHY Procedure

This procedure locks the hierarchy metadata for update by acquiring a database
lock on the row that identifies the hierarchy in the CAWWMR model table.

CWM2_OLAP_HIERARCHY 20-5

SET_DESCRIPTION Procedure

Syntax
LOCK_H ERARCHY (
di mensi on_owner IN VARCHAR?,
di mensi on_nane IN VARCHAR?,
hi erar chy_nane IN VARCHARZ,
wai t _for_l ock IN BOCLEAN DEFAULT FALSE);
Parameters
Table 206 LOCK_HIERARCHY Procedure Parameters
Parameter Description
di nensi on_owner Owner of the dimension.
di nensi on_nane Name of the dimension.
hi er ar chy_nane Name of the hierarchy.
wai t _for_|ock (Optional) Whether or not to wait for the hierarchy to be
available when it is already locked by another user. If you do
not specify a value for this parameter, the procedure does not
wait to acquire the lock.
Exceptions

Table 20—7 LOCK_HIERARCHY Procedure Exceptions

Exception

Description

no_access_privil eges

di nensi on_not _found

hi erarchy_not _found

User does not have the necessary privileges. User must be the
dimension owner and have the OLAP_DBA role.

Parent dimension not found.

Hierarchy not found.

SET DESCRIPTION Procedure

This procedure sets the description for a hierarchy.

20-6 Oracle9i OLAP User's Guide

Summary of CWM2_OLAP_HIERARCHY Subprograms

Syntax
SET_DESCRI PTI ON (
di mensi on_owner IN VARCHAR?,
di mensi on_name IN VARCHAR?,
hi erarchy_nane IN VARCHARZ,
description IN VARCHAR?);
Parameters
Table 20-8 SET_DESCRIPTION Procedure Parameters
Parameter Description
di nensi on_owner Owner of the dimension.
di nensi on_nane Name of the dimension.
hi er ar chy_nane Name of the hierarchy.
description Description of the hierarchy.
Exceptions

Table 209 SET_DESCRIPTION Procedure Exceptions

Exception Description

no_access_privil eges User does not have the necessary privileges. User must
be the dimension owner and have the OLAP_DBA role.

di nensi on_not _found Parent dimension not found.

hi er ar chy_not _f ound Hierarchy not found.

SET_DISPLAY_NAME Procedure

This procedure sets the display name for a dimension.

CWM2_OLAP_HIERARCHY 20-7

SET_HIERARCHY_NAME Procedure

Syntax

SET_DI SPLAY_NAME (
di mensi on_own

er IN VARCHAR?,

di mensi on_name IN VARCHAR?,
hi erarchy_name IN VARCHARZ,

di spl ay_nane

Parameters

IN VARCHARZ);

Table 20-10 SET_DISPLAY_NAME Procedure Parameters

Parameter

Description

di nensi on_owner
di nensi on_nane
hi er ar chy_nane

di spl ay_nane

Owner of the dimension.
Name of the dimension.

Name of the hierarchy.

Display name for the hierarchy.

Exceptions

Table 20-11 SET_DISPLAY_NAME Procedure Exceptions

Exception

Description

no_access_privil eges

di nensi on_not _found

hi erarchy_not _found

User does not have the necessary privileges. User must be
the dimension owner and have the OLAP_DBA role.

Parent dimension not found.

Hierarchy not found.

SET_HIERARCHY_NAME Procedu

re

This procedure sets the name for a hierarchy.

20-8 Oracle9i OLAP User's Guide

Summary of CWM2_OLAP_HIERARCHY Subprograms

Syntax

SET_HI ERARCHY_NAME (
di mensi on_owner IN VARCHAR?,
di mensi on_name IN VARCHAR?,
hi erarchy_nane IN VARCHARZ,
set _hi erarchy_nanme IN VARCHAR2);

Parameters

Table 20-12 SET_HIERARCHY_NAME Procedure Parameters

Parameter Description

di nensi on_owner Owner of the dimension.
di nensi on_nane Name of the dimension.
hi er ar chy_nane Original name for the hierarchy.

set _hi erarchy_nanme New name for the hierarchy.

Exceptions

Table 20-13 SET_HIERARCHY_NAME Procedure Exceptions

Exception Description

no_access_privil eges User does not have the necessary privileges. User must be
the dimension owner and have the OLAP_DBA role.

di nensi on_not _found Parent dimension not found.

hi er ar chy_not _f ound Hierarchy not found.

SET SHORT DESCRIPTION Procedure

This procedure sets the short description for a hierarchy.

CWM2_OLAP_HIERARCHY 20-9

SET_SOLVED_CODE Procedure

Syntax
SET_SHORT_DESCRI PTI ON (
di mensi on_owner IN VARCHAR?,
di mensi on_name IN VARCHAR?,
hi erarchy_name IN VARCHARZ,
short _description IN VARCHAR2);
Parameters
Table 20-14 SET_SHORT_DESCRIPTION Procedure Parameters
Parameter Description
di nensi on_owner Owner of the dimension.
di nensi on_nane Name of the dimension.
hi er ar chy_nane Name of the hierarchy.
short _descri ption Short description of the hierarchy.
Exceptions

Table 20-15 SET_SHORT_DESCRIPTION Procedure Exceptions

Exception Description

no_access_privil eges User does not have the necessary privileges. User must
be the dimension owner and have the OLAP_DBA role.

di nensi on_not _found Parent dimension not found.

hi erarchy_not _found Hierarchy not found.

SET SOLVED CODE Procedure

This procedure sets the solved code for a hierarchy. The solved code specifies whether
or not the data dimensioned by this hierarchy includes embedded totals and whether it is
mapped to a level-based dimension table or a parent-child dimension table. If mapped to a
parent-child dimension table, it cannot be accessed by the OLAP APL

For more information on mapping solved and unsolved data, see "Joining Fact
Tables with Dimension Tables" on page 13-4.

20-10 Oracle9i OLAP User’'s Guide

Example: Creating a Hierarchy

Syntax
SET_SOLVED_CODE (
di mensi on_owner IN VARCHAR?,
di mensi on_name IN VARCHAR?,
hi erarchy_nane IN VARCHARZ,
sol ved_code IN VARCHAR?);
Parameters
Table 20-16 SET_SOLVED_CODE Procedure Parameters
Parameter Description
di nensi on_owner Owner of the dimension.
di nensi on_nane Name of the dimension.
hi er ar chy_nane Name of the hierarchy.
sol ved_code One of the following values:
. UNSOLVED LEVEL, for a hierarchy that contains no embedded
totals and is stored in a level-based dimension table
. SOLVED LEVEL, for a hierarchy that contains embedded
totals, has a grouping ID, and is stored in a level-based
dimension table
. SOLVED VALUE, for a hierarchy that contains embedded
totals and is stored in a parent-child dimension table. This type
of hierarchy cannot be accessed by the OLAP APL
Exceptions

Table 20-17 SET_SOLVED_CODE Procedure Exceptions

Exception Description

no_access_privil eges User does not have the necessary privileges. User must
be the dimension owner and have the OLAP_DBA role.

di nensi on_not _f ound Parent dimension not found.

hi erar chy_not _f ound Hierarchy not found.

Example: Creating a Hierarchy

The following statement creates a dimension hierarchy PRODUCT_DI M_ROLLUP, for
the PRODUCT_DI Mdimension in the JSM THschema. The display name is

CWM2_OLAP_HIERARCHY 20-11

Example: Creating a Hierarchy

St andar d. The short descriptionis St d Pr oduct , and the description is

St andard Product Hi erarchy. The solved code is SOLVED LEVEL- BASED,
meaning that this hierarchy will be mapped to an embedded total dimension table,
and that the fact table associated with this dimension hierarchy will store fully
solved data.

execute cwr@_ol ap_hi erarchy. create_hi erarchy
("JSMTH, 'PRODUCT_DIM, 'PRODUCT_DIM ROLLUP',
"Standard’, 'Std Product’, 'Standard Product Herarchy’,
" SOLVED LEVEL- BASED);

20-12 Oracle9i OLAP User’s Guide

21

CWM2 OLAP LEVEL

The CWWM2_COLAP_LEVEL package provides procedures for creating, dropping, and
locking levels, and for adding levels to hierarchies. It also provides procedures for
setting the general properties of levels.

See Also: Chapter 13, "Using the OLAP Catalog Metadata APIs".
This chapter discusses the following topics:
« Understanding Levels

« Summary of CWM2_OLAP_LEVEL Subprograms

« Example: Creating a Level

CWM2_OLAP_LEVEL 21-1

Understanding Levels

Understanding Levels

A level is an OLAP metadata entity. This means that it is a logical object, identified
by name and owner, within the OLAP Catalog.

Dimension members are organized in levels that map to columns in dimension
tables or views. Levels are typically organized in hierarchies. Every dimension must
have at least one level. Levels are fully described in "OLAP Metadata Model" on
page 4-8

Use the procedures in the CWW2_QLAP_LEVEL package to create, drop, and lock
levels, to assign levels to hierarchies, and to specify descriptive information for
display purposes.

The parent dimension and the parent hierarchy must already exist in the OLAP
Catalog before you can create a level.

Summary of CWM2_OLAP_LEVEL Subprograms

Table 21-1 CWM2_OLAP_LEVEL Subprograms

Subprogram Description

ADD LEVEL _TO H ERARCHY Adds alevel to a hierarchy.
Procedure on page 21-3

CREATE_LEVEL Procedure on Createsalevel.
page 21-4

DROP_LEVEL Procedure on Drops a level.
page 21-5

LOCK_LEVEL Procedure on Locks the level metadata for update.
page 21-6

REMOVE_LEVEL_FROM_ Removes a level from a hierarchy.
HI ERARCHY Procedure on

page 21-7

SET_DESCRI PTI ON Procedur e Sets the description for a level.
on page 21-8

SET_DI SPLAY_NAME Sets the display name for a level.

Procedure on page 21-9

SET_LEVEL_NAME Procedure Sets the name of a level.
on page 21-9

21-2 Oracle9i OLAP User’s Guide

Summary of CWM2_OLAP_LEVEL Subprograms

Table 21-1 (Cont.) CWM2_

OLAP_LEVEL Subprograms

Subprogram

Description

SET_PLURAL_NANME Procedure Sets the plural name for a level.

on page 21-10
SET_SHORT_DESCRI PTI ON

Sets the short description for a level.

Procedure on page 21-11

ADD_LEVEL_TO_HIERARCHY Procedure

This procedure adds a level to a hierarchy.

Syntax

Parameters

ADD _LEVEL_TO H ERARCHY (
di mensi on_owner
di mensi on_name
hi erarchy_name
| evel _nane

IN VARCHAR?,
IN VARCHAR?,
IN VARCHAR?,
IN VARCHAR?,

parent _level name IN VARCHAR2 DEFAULT);

Table 21-2 ADD_LEVEL_TO_HIERARCHY Procedure Parameters

Parameter

Description

di nensi on_owner
di nensi on_nane
hi er ar chy_nane
| evel _name

parent | evel nane

Owner of the dimension.

Name of the dimension.

Name of the hierarchy.

Name of the level to add to the hierarchy.

Name of the level’s parent in the hierarchy. If you do not
specify a parent, then the added level is the root of the
hierarchy.

CWM2_OLAP_LEVEL 21-3

CREATE_LEVEL Procedure

Exceptions

Table 21-3 ADD_LEVEL_TO_HIERARCHY Procedure Exceptions

Exception Description

no_access_privil eges User does not have the necessary privileges. User must
be the owner and have the OLAP_DBA role.

di nensi on_not _found Parent dimension not found.

hi erarchy_not _found Hierarchy not found.

| evel _not _f ound Level not found.

CREATE_LEVEL Procedure

This procedure creates a new level in the OLAP Catalog.

You must specify descriptions and display properties as part of level creation. Once
the level has been created, you can override these properties by calling other
procedures in the CWWR2_OLAP_LEVEL package.

Syntax
CREATE_LEVEL (
di mensi on_owner IN VARCHAR?,
di mensi on_name IN VARCHAR?,
| evel _nane IN VARCHARZ,
di spl ay_nane IN VARCHARZ,
pl ural _name IN VARCHARZ,
short _description IN VARCHARZ,
description IN VARCHAR2);
Parameters

Table 21-4 CREATE_LEVEL Procedure Parameters

Parameter Description

di nensi on_owner Owner of the dimension.
di nensi on_nane Name of the dimension.

| evel _nane Name of the level.

di spl ay_nane Display name for the level.
pl ural _name Plural name for the level.

21-4 Oracle9i OLAP User’s Guide

Summary of CWM2_OLAP_LEVEL Subprograms

Exceptions

Table 21-4 (Cont.) CREATE_LEVEL Procedure Parameters

Parameter Description
short _description Short description of the level.
descri ption Description of the level.

Table 21-5 CREATE_LEVEL Procedure Exceptions

Exception Description

no_access_privil eges User does not have the necessary privileges. User must
be the owner and have the OLAP_DBA role.

di nensi on_not _f ound Parent dimension not found.

| evel _al ready_exi sts This level already exists for this dimension.

DROP_LEVEL Procedure

Syntax

Parameters

This procedure drops a level from the OLAP Catalog. All related level attributes are
also dropped.

DROP_LEVEL (
di mensi on_owner IN VARCHARZ,
di mensi on_nane IN VARCHAR?,
| evel _name IN VARCHAR?2);

Table 21-6 DROP_LEVEL Procedure Parameters

Parameter Description

di nensi on_owner Owner of the dimension.
di nensi on_nane Name of the dimension.
| evel _name Name of the level.

CWM2_OLAP_LEVEL 21-5

LOCK_LEVEL Procedure

Exceptions

Table 21-7 DROP_LEVEL Procedure Exceptions

Exception Description

no_access_privil eges User does not have the necessary privileges. User must
be the owner and have the OLAP_DBA role.

di nensi on_not _found Parent dimension not found.

| evel _not_found Level not found.

LOCK_LEVEL Procedure

This procedure locks the level metadata for update by acquiring a database lock on
the row that identifies the level in the CWWM2 model table.

Syntax
LOCK_LEVEL (
di mensi on_owner IN VARCHAR?,
di mensi on_name IN VARCHAR?,
| evel _nane IN VARCHAR?,
wai t _for_l ock IN BOCLEAN DEFAULT FALSE);
Parameters

Table 21-8 LOCK_LEVEL Procedure Parameters

Parameter Description

di nensi on_owner Owner of the dimension.

di nensi on_nane Name of the dimension.

| evel _nane Name of the level.

wai t _for _|ock (Optional) Whether or not to wait for the level to be available

when it is already locked by another user. If you do not specify
a value for this parameter, the procedure does not wait to
acquire the lock.

21-6 Oracle9i OLAP User’s Guide

Summary of CWM2_OLAP_LEVEL Subprograms

Exceptions

Table 21-9 LOCK_LEVEL Procedure Exceptions

Exception Description

no_access_pri vil eges User does not have the necessary privileges. User must be the
owner and have the OLAP_DBA role.

di nensi on_not _found Parent dimension not found.

| evel _not_found Level not found.

REMOVE_LEVEL_FROM_HIERARCHY Procedure

This procedure removes a level from a hierarchy.

Syntax

REMOVE_LEVEL_FROM H ERARCHY (
di mensi on_owner IN VARCHARZ,
di mensi on_name IN VARCHAR?,
hi erarchy_name IN VARCHARZ,
| evel _nane IN VARCHAR?);

Parameters

Table 21-10 REMOVE_LEVEL_FROM_HIERARCHY Procedure Parameters

Parameter Description

di nensi on_owner Owner of the dimension.
di nensi on_nane Name of the dimension.
hi er ar chy_name Name of the hierarchy.

| evel _name Name of the level to remove from the hierarchy.

Exceptions

Table 21-11 REMOVE_LEVEL_FROM_HIERARCHY Procedure Exceptions

Exception Description

no_access_privil eges User does not have the necessary privileges. User must
be the owner and have the OLAP_DBA role.

CWM2_OLAP_LEVEL 21-7

SET_DESCRIPTION Procedure

Table 21-11 (Cont.) REMOVE_LEVEL_FROM_HIERARCHY Procedure Exceptions

Exception Description

di nensi on_not _found Parent dimension not found.
hi erarchy_not _found Hierarchy not found.
child_l evel _not_found Child level not found.

SET DESCRIPTION Procedure

This procedure sets the description for a level.

Syntax
SET_DESCRI PTI ON (
di mensi on_owner IN VARCHAR?,
di mensi on_name IN VARCHARZ,
| evel _nane IN VARCHAR?,
description IN VARCHARZ);
Parameters
Table 21-12 SET_DESCRIPTION Procedure Parameters
Parameter Description
di nensi on_owner Owner of the dimension.
di nensi on_nane Name of the dimension.
| evel _nanme Name of the level.
descri ption Description of the level.
Exceptions

Table 21-13 SET_DESCRIPTION Procedure Exceptions

Exception Description

no_access_privil eges User does not have the necessary privileges. User must
be the owner and have the OLAP_DBA role.

di nensi on_not _f ound Parent dimension not found.

| evel _not _f ound Level not found.

21-8 Oracle9i OLAP User’s Guide

Summary of CWM2_OLAP_LEVEL Subprograms

SET_DISPLAY_NAME Procedure

This procedure sets the display name for a level.

Syntax
SET_DI SPLAY_NAME (
di mensi on_owner IN VARCHARZ,
di mensi on_name IN VARCHARZ,
| evel _nane IN VARCHAR?,
di spl ay_nane IN VARCHAR?);
Parameters
Table 21-14 SET_DISPLAY_NAME Procedure Parameters
Parameter Description
di nensi on_owner Owner of the dimension.
di nensi on_nane Name of the dimension.
| evel _nanme Name of the level.
di spl ay_nane Display name for the level.
Exceptions

Table 21-15 SET_DISPLAY_NAME Procedure Exceptions

Exception Description

no_access_privil eges User does not have the necessary privileges. User must be
the owner and have the OLAP_DBA role.

di nensi on_not _found Parent dimension not found.

| evel _not_found Level not found.

SET LEVEL_NAME Procedure

This procedure sets the name for a level.

CWM2_OLAP_LEVEL 21-9

SET_PLURAL_NAME Procedure

Syntax
SET_LEVEL_NAME (
di mensi on_owner IN VARCHAR?,
di mensi on_name IN VARCHAR?,
| evel _nane IN VARCHAR?,
set _| evel _nane IN VARCHAR?);
Parameters
Table 21-16 SET_LEVEL_NAME Procedure Parameters
Parameter Description
di nensi on_owner Owner of the dimension.
di nensi on_nane Name of the dimension.
| evel _nane Original name for the level.
set | evel _nane New name for the level.
Exceptions

Table 21-17 SET_LEVEL_NAME Procedure Exceptions

Exception Description

no_access_privil eges User does not have the necessary privileges. User must be
the owner and have the OLAP_DBA role.

di nensi on_not _found Parent dimension not found.

| evel _not_found Level not found.

SET_PLURAL_NAME Procedure

This procedure sets the plural name of a level.

21-10 Oracle9i OLAP User’'s Guide

Summary of CWM2_OLAP_LEVEL Subprograms

Syntax
SET_PLURAL_NAME (
di mensi on_owner IN VARCHAR?,
di mensi on_name IN VARCHAR?,
| evel _nane IN VARCHAR?,
pl ural _nane IN VARCHARZ);
Parameters
Table 21-18 SET_PLURAL_NAME Procedure Parameters
Parameter Description
di nensi on_owner Owner of the dimension.
di nensi on_nane Name of the dimension.
| evel _nane Name of the level.
pl ural _name Plural name for the level.
Exceptions

Table 21-19 SET_PLURAL_NAME Procedure Exceptions

Exception Description

no_access_privil eges User does not have privileges to edit the dimension. User
must be the owner or OLAP_DBA.

di nensi on_not _found Parent dimension not found.

| evel _not_found Level not found.

SET SHORT DESCRIPTION Procedure

This procedure sets the short description for a level.

CWM2_OLAP_LEVEL 21-11

Example: Creating a Level

Syntax
SET_SHORT_DESCRI PTI ON (
di mensi on_owner IN VARCHAR?,
di mensi on_name IN VARCHAR?,
| evel _nane IN VARCHAR?,
short _description IN VARCHAR?) ;
Parameters
Table 21-20 SET_SHORT_DESCRIPTION Procedure Parameters
Parameter Description
di nensi on_owner Owner of the dimension.
di nensi on_nane Name of the dimension.
| evel _nane Name of the level.
short _descri ption Short description of the level.
Exceptions

Table 21-21 SET_SHORT_DESCRIPTION Procedure Exceptions

Exception Description

no_access_privil eges User does not have the necessary privileges. User must
be the owner and have the OLAP_DBA role.

di nensi on_not _found Parent dimension not found.

| evel _not_found Level not found.

Example: Creating a Level

The following statements create four levels for the PRODUCT_DI Mdimension and
assign them to the PRODUCT_DI M_ROLLUP hierarchy:.

execute cwr2_ol ap_| evel . create_| evel
("JSMTH, 'PRODUCT DIM, ' TOTALPROD LWL,
"Total Product’, 'Al Products’, 'Total’,
"Equi pnent and Parts of standard product hierarchy’);
execute cwr_ol ap_| evel . create_| evel
("JSMTH, 'PRODUCT_DIM, 'PROD _CATEGORY_LVL',
"Product Category’, ’'Product Categories’, 'Category’,
"Categories of standard product hierarchy’);

21-12 Oracle9i OLAP User’s Guide

Example: Creating a Level

execute cwr_ol ap_| evel . create_| evel
("JSMTH, 'PRODUCT DIM, ' PROD_SUBCATEGORY LVL',
"Product Sub-Category’, ’'Product Sub-Categories', ’'Sub-Category’,
' Sub- Cat egories of standard product hierarchy');
execute cwr_ol ap_| evel . create_| evel
("JSMTH, 'PRODUCT_DIM, 'PRODUCT LWL,
"Product’, 'Products’, 'Product’,
"I'ndividual products of standard product hierarchy’);

execute cwr2_ol ap_| evel . add_| evel _to_hierarchy
("JSMTH, 'PRODUCT_DIM, 'PRODUCT_DI M ROLLUP,
" PRODUCT_LVL', ' PROD_SUBCATEGORY LVL');
execute cwr2_ol ap_| evel . add_I evel _to_hi erarchy
("JSMTH, 'PRODUCT_DIM, 'PRODUCT_DI M ROLLUP',
' PRCD_SUBCATEGORY_LVL', ' PROD CATEGORY LVL');
execute cwr2_ol ap_| evel . add_| evel _to_hierarchy
("JSMTH, 'PRODUCT_DIM, 'PRODUCT_DI M ROLLUP,
' PROD_CATEGCORY_LVL', * TOTALPROD LVL');
execute cwr2_ol ap_| evel . add_I evel _to_hi erarchy
("JSMTH, 'PRODUCT DIM, 'PRODUCT_DI M ROLLUP', ' TOTALPROD LVL');

CWM2_OLAP_LEVEL 21-13

Example: Creating a Level

21-14 Oracle9i OLAP User’s Guide

22

CWM2_OLAP_LEVEL_ATTRIBUTE

The CWW2_QOLAP_LEVEL_ATTRI BUTE package provides a procedure for creating
level attributes and associating them with levels and dimension attributes. It also
provides procedures for dropping, locking, and setting the general properties of
level attributes.

See Also: Chapter 13, "Using the OLAP Catalog Metadata APIs".
This chapter discusses the following topics:
» Understanding Level Attributes

« Summary of CWM2_OLAP_LEVEL_ATTRIBUTE Subprograms
« Example: Creating a Level Attribute

CWM2_OLAP_LEVEL_ATTRIBUTE 22-1

Understanding Level Attributes

Understanding Level Attributes

A level attribute is an OLAP metadata entity. This means that it is a logical object,
identified by name and owner, within the OLAP Catalog.

A level attribute is a child entity of a level and a dimension attribute. A level
attribute stores descriptive information about its related level. For example, a level
containing product identifiers might have an associated level attribute that contains
color information for each product.

Each level attribute maps to a column in a dimension table. The level attribute
column must be in the same table as the column (or columns) for its associated
level. Level attributes are fully described in "OLAP Metadata Model" on page 4-8.

Use the procedures in the CWWR2_OLAP_LEVEL _ATTRI BUTE package to create,
drop, and lock level attributes, to assign level attributes to levels and dimension
attributes, and to specify descriptive information for display purposes.

Several level attribute names are reserved, because they have special significance
within CWMR. Reserved level attributes are associated with reserved dimension
attributes of the same name. Reserved level attributes will be mapped to columns
containing specific information. The reserved level attributes are listed in

Table 22-1.

Table 22-1 Reserved Level Attributes

Dimension Attribute Description

Long Description A long description of the dimension member.

Short Description A short description of the dimension member.

End Date For a time dimension, the last date in a time period. (Required)

Ti me Span For a time dimension, the number of days in a time period.
(Required)

Prior Period For a time dimension, the time period before this time period.

Year Ago Period For a time dimension, the period a year before this time period.

ET Key For an embedded total dimension, the embedded total key,

which identifies the dimension member at the lowest level in a
row of the dimension table.

Parent ET Key For an embedded total dimension, the dimension member that
is the parent of the ET key.

22-2 Oracle9i OLAP User’s Guide

Summary of CWM2_OLAP_LEVEL_ATTRIBUTE Subprograms

Table 22-1 (Cont.) Reserved Level Attributes

Dimension Attribute Description

Gouping ID For an embedded total dimension, the grouping ID (GID),
which identifies the hierarchical level for a row of the
dimension table.

Parent Grouping ID For an embedded total dimension, the dimension member that
is the parent of the grouping ID.

The parent dimension, parent level, and parent dimension attribute must already
exist in the OLAP Catalog before you can create a level attribute.

Summary of CWM2_OLAP_LEVEL_ATTRIBUTE Subprograms

Table 22-2 CWM2_OLAP_LEVEL_ATTRIBUTE Subprograms

Subprogram Description

CREATE_LEVEL_ATTRI BUTE on Creates a level attribute.

page 22-3

DROP_LEVEL_ATTRI BUTE Drops a level attribute.

Procedure on page 22-5

LOCK_LEVEL_ATTRI BUTE Locks the level attribute metadata for update.

Procedure on page 22-6

SET_DESCRI PTI ON Procedur e Sets the description for a level attribute.
on page 22-8

SET_DI SPLAY_NAME Sets the display name for a level attribute.
Procedure on page 22-9

SET_LEVEL_ATTRI BUTE_NAME Sets the name of a level attribute.
Procedure on page 22-10

SET_SHORT_DESCRI PTI ON Sets the short description for a level attribute.
Procedure on page 22-12

CREATE_LEVEL_ATTRIBUTE

This procedure creates a new level attribute in the OLAP Catalog and associates the
level attribute with a level and with a dimension attribute.

CWM2_OLAP_LEVEL_ATTRIBUTE 22-3

CREATE_LEVEL_ATTRIBUTE

If the level attribute name should be reserved for a specific level and dimension
attribute combination, you can set the RESERVED_LEVEL_ATTRI BUTE argument to
TRUE. For more information, see Table 22-1, " Reserved Level Attributes".

You must specify descriptions and display properties as part of level attribute
creation. Once the level attribute has been created, you can override these
properties by calling other procedures in the CWWR2_OLAP_LEVEL_ATTRI BUTE

package.
Syntax
CREATE_LEVEL_ATTRI BUTE (
di mensi on_owner IN VARCHAR?,
di mensi on_name IN VARCHARZ,
dimension_attribute namée IN VARCHAR?,
| evel _nane IN VARCHAR?,
| evel attribute_nane IN VARCHARZ,
di spl ay_nane IN VARCHAR?,
short _description IN VARCHAR?,
description IN VARCHARZ,
reserved | evel _attribute IN BOOLEAN FALSE);
Parameters

Table 22-3 CREATE_LEVEL_ATTRIBUTE Procedure Parameters

Parameter Description

di nensi on_owner Owner of the dimension.

di nensi on_nane Name of the dimension.

di nension_attribute_ Name of the dimension attribute that includes this level
nane attribute.

| evel _nane Name of the level.

| evel _attribute_name Name of the level attribute.

di spl ay_nane Display name for the level attribute.
short _description Short description of the level attribute.
descri ption Description of the level attribute.

22-4 Oracle9i OLAP User’s Guide

Summary of CWM2_OLAP_LEVEL_ATTRIBUTE Subprograms

Table 22-3 (Cont.) CREATE_LEVEL_ATTRIBUTE Procedure Parameters

Parameter Description
reserved_| evel _ Whether or not this level attribute is reserved. By default, the
attribute level attribute is not reserved.

The reserved level attributes are as follows.

Long Description
Short Description
End Date

Ti me Span

Prior Period

Year Ago Period

ET Key
Parent ET Key
Gouping ID

Parent Grouping ID

Exceptions

Table 22—-4 CREATE_LEVEL_ATTRIBUTE Procedure Exceptions

Exception Description

no_access_privil eges User does not have the necessary privileges. User must
be the owner and have the OLAP_DBA role.

di nensi on_not _found Parent dimension not found.

di mensi on_attri bute_not_ Parent dimension attribute not found.

f ound

| evel _not_found Parent level not found.

level _attribute_al ready_ This level attribute already exists for this level.
exi sts

DROP_LEVEL_ATTRIBUTE Procedure

This procedure drops a level attribute from the OLAP Catalog.

CWM2_OLAP_LEVEL_ATTRIBUTE 22-5

LOCK_LEVEL_ATTRIBUTE Procedure

Syntax
DROP_LEVEL_ATTRI BUTE (
di mensi on_owner IN VARCHAR?,
di mensi on_nane IN VARCHAR?,
dimension_attribute name IN VARCHARZ,
| evel _name IN VARCHAR?,
| evel _attribute_name IN VARCHAR?) ;
Parameters
Table 22-5 DROP_LEVEL_ATTRIBUTE Procedure Parameters
Parameter Description
di nensi on_owner Owner of the dimension.
di nensi on_nane Name of the dimension.
di mension_attribute_ Name of the dimension attribute.
nane
| evel _nanme Name of the level.
| evel _attribute_name Name of the level attribute.
Exceptions

Table 22-6 DROP_LEVEL_ATTRIBUTE Procedure Exceptions

Exception Description

no_access_privil eges User does not have the necessary privileges. User must
be the owner and have the OLAP_DBA role.

di nensi on_not _f ound Parent dimension not found.

di nension_attribute_not_ Parent dimension attribute not found.

f ound

| evel _not _f ound Parent level not found.

| evel _attribute_not_ Level attribute not found.

f ound

LOCK_LEVEL_ATTRIBUTE Procedure

This procedure locks the level attribute metadata for update by acquiring a
database lock on the row that identifies the level attribute in the CWWR model table.

22-6 Oracle9i OLAP User’s Guide

Summary of CWM2_OLAP_LEVEL_ATTRIBUTE Subprograms

Syntax

Parameters

Exceptions

LOCK_LEVEL_ATTRI BUTE (

di mensi on_owner IN VARCHAR?,
di mensi on_nane IN VARCHAR?,
dimension_attribute_name IN VARCHARZ,
| evel _nane IN VARCHARZ,
| evel _attribute_name IN VARCHARZ,
wai t _for_l ock IN BOCLEAN DEFAULT FALSE);

Table 22—-7 LOCK_LEVEL_ATTRIBUTE Procedure Parameters

Parameter Description
di nensi on_owner Owner of the dimension.
di nensi on_nane Name of the dimension.

di nensi on_attri bute_ Name of the dimension attribute.
nanme

| evel _nane Name of the level.
| evel _attribute_name Name of the level attribute.

wai t _for_|ock (Optional) Whether or not to wait for the level attribute to be
available when it is already locked by another user. If you do
not specify a value for this parameter, the procedure does not
wait to acquire the lock.

Table 22-8 LOCK_LEVEL_ATTRIBUTE Procedure Exceptions

Exception Description

no_access_pri vil eges User does not have the necessary privileges. User must be the
owner and have the OLAP_DBA role.

di nensi on_not _found Parent dimension not found.

di nensi on_attri but e_ Parent dimension attribute not found.
not _f ound

| evel _not _f ound Parent level not found.

CWM2_OLAP_LEVEL_ATTRIBUTE 22-7

SET_DESCRIPTION Procedure

Table 22-8 (Cont.) LOCK_LEVEL_ATTRIBUTE Procedure Exceptions

Exception Description

| evel _attribute_not_ Level attribute not found.
f ound

SET DESCRIPTION Procedure

This procedure sets the description for a level attribute.

Syntax
SET_DESCRI PTI ON (
di mensi on_owner IN VARCHAR?,
di mensi on_name IN VARCHARZ,
dimension_attribute_name IN VARCHAR?,
| evel _nane IN VARCHAR?,
| evel attribute_nane IN VARCHARZ,
description IN VARCHAR?);
Parameters
Table 22-9 SET_DESCRIPTION Procedure Parameters
Parameter Description
di nensi on_owner Owner of the dimension.
di nensi on_nane Name of the dimension.
di nension_attri bute_name Name of the dimension attribute.
| evel _nane Name of the level.
| evel _attribute_name Name of the level attribute.
description Description of the level attribute.
Exceptions

Table 22-10 SET_DESCRIPTION Procedure Exceptions

Exception Description

no_access_privil eges User does not have the necessary privileges. User must
be the owner and have the OLAP_DBA role.

22-8 Oracle9i OLAP User’s Guide

Summary of CWM2_OLAP_LEVEL_ATTRIBUTE Subprograms

Table 22-10 (Cont.) SET_DESCRIPTION Procedure Exceptions

Exception Description

di nensi on_not _found Parent dimension not found.

di nension_attribute_not_ Parent dimension attribute not found.
found

| evel _not _f ound Parent level not found.
| evel _attribute_not_ Level attribute not found.
f ound

SET DISPLAY NAME Procedure

Syntax

Parameters

This procedure sets the display name for a level attribute.

SET_DI SPLAY_NAME (

di mensi on_owner IN VARCHAR?,
di mensi on_name IN VARCHAR?,
dimension_attribute_name IN VARCHARZ,
| evel _nane IN VARCHARZ,
| evel _attribute_nanme IN VARCHARZ,
di spl ay_nane IN VARCHAR?);

Table 22-11 SET_DISPLAY_NAME Procedure Parameters

Parameter Description

di nensi on_owner Owner of the dimension.

di nensi on_nane Name of the dimension.

di nensi on_ Name of the dimension attribute.
attribute_nane

| evel _nane Name of the level.

| evel _attribute_ Name of the level attribute.

nanme

di spl ay_nane Display name for the level attribute.

CWM2_OLAP_LEVEL_ATTRIBUTE 22-9

SET_LEVEL_ATTRIBUTE_NAME Procedure

Exceptions

Table 22-12 SET_DISPLAY_NAME Procedure Exceptions

Exception Description

no_access_privil eges User does not have the necessary privileges. User must be
the owner and have the OLAP_DBA role.

di nensi on_not _found Parent dimension not found.

di nension_attribute_ Parent dimension attribute not found.
not _f ound

| evel _not _f ound Parent level not found.

| evel _attribute_not _ Level attribute not found.

f ound

SET_LEVEL_ATTRIBUTE_NAME Procedure

This procedure sets the name for a level attribute.

For information on reserved level attribute names, see Table 22-1, " Reserved Level

Attributes".
Syntax
SET_LEVEL_ATTRI BUTE_NAME (
di mensi on_owner IN VARCHAR?,
di mensi on_name IN VARCHAR?,
di mensi on_attri bute_name IN VARCHAR2,
| evel _nane IN VARCHARZ,
| evel _attribute_name IN VARCHARZ,
set |evel _attribute_name IN VARCHARZ,
reserved_| evel _attribute IN BOOLEAN DEFAULT FALSE);
Parameters

Table 22-13 SET_LEVEL_ATTRIBUTE_NAME Procedure Parameters

Parameter Description

di nensi on_owner Owner of the dimension.

di nensi on_nane Name of the dimension.

di nensi on_ Name of the dimension attribute.

attribute_nane

22-10 Oracle9i OLAP User’s Guide

Summary of CWM2_OLAP_LEVEL_ATTRIBUTE Subprograms

Table 22-13 (Cont.) SET_LEVEL_ATTRIBUTE_NAME Procedure Parameters

Parameter Description

| evel _nanme Name for the level.

| evel _attribute_ Original name for the level attribute.
nanme

set _| evel _ New name for the level attribute.

attribute_nane

reserved_| evel _ Whether or not this level attribute is reserved. By default, the
attribute level attribute is not reserved.

Exceptions

Table 22-14 SET_LEVEL_ATTRIBUTE_NAME Procedure Exceptions

Exception Description

no_access_privil eges User does not have the necessary privileges. User must be
the owner and have the OLAP_DBA role.

di nensi on_not _found Parent dimension not found.

di nension_attribute_ Parent dimension attribute not found.
not _f ound

| evel _not _f ound Parent level not found.

| evel _attribute_not_ Level attribute not found.

f ound

CWM2_OLAP_LEVEL_ATTRIBUTE 22-11

SET_SHORT_DESCRIPTION Procedure

SET SHORT DESCRIPTION Procedure

This procedure sets the short description for a level attribute.

Syntax
SET_SHORT_DESCRI PTI ON (
di mensi on_owner IN VARCHAR?,
di mensi on_name IN VARCHARZ,
dinension_attribute_name IN VARCHAR?,
| evel _nane IN VARCHAR?,
| evel attribute_nane IN VARCHARZ,
short _description IN VARCHARZ);
Parameters
Table 22-15 SET_SHORT_DESCRIPTION Procedure Parameters
Parameter Description
di nensi on_owner Owner of the dimension.
di nensi on_nane Name of the dimension.
di mensi on_attri bute_nane Name of the dimension attribute.
| evel _nane Name of the level.
| evel _attribute_nanme Name of the level attribute.
short _description Short description of the level attribute.
Exceptions

Table 22-16 SET_SHORT_DESCRIPTION Procedure Exceptions

Exception Description

no_access_privil eges User does not have the necessary privileges. User must
be the owner and have the OLAP_DBA role.

di nensi on_not _f ound Parent dimension not found.

di mensi on_attri bute_not_ Parent dimension attribute not found.

f ound

| evel _not_found Parent level not found.

| evel _attribute_not _ Level attribute not found.

f ound

22-12 Oracle9i OLAP User’s Guide

Example: Creating a Level Attribute

Example: Creating a Level Attribute

The following statements create a color attribute for the lowest level and long
descriptions for all four levels of the PRODUCT_DI Mdimension.

execute cwr2_ol ap_l evel _attribute.create_|level _attribute
("JSMTH, 'PRODUCT_DIM, 'Product Color’, 'PRODUCT_LVL', 'Product Color’,
"PROD_STD COLOR', 'Prod Color’, 'Product Color');

execute cwr2_ol ap_level attribute.create_|evel attribute
("JSMTH, 'PRODUCT_DIM, 'Long Description’, 'PRCDUCT LVL',
"Long Description’,’ PRODUCT_STD LLABEL', ’'Product’,
"Long Label s for individual products of the PRODUCT hierarchy', TRUE);

execute cwr2_ol ap_l evel _attribute.create_|level _attribute
("JSMTH, 'PRODUCT DIM, 'Long Description', 'PRCD SUBCATEGORY LVL',
"Long Description’, 'PROD STD LLABEL', ' Product Sub Category’,
"Long Labels for subcategories of the PRODUCT hierarchy’, TRUE);

execute cwr2_ol ap_l evel _attribute.create_|level _attribute
("JSMTH, 'PRODUCT_DIM, 'Long Description’, 'PROD CATEGORY LVL',
"Long Description’, 'PROD STD LLABEL', 'Product Category’,
"Long Labels for categories of the PRODUCT hierarchy’, TRUE);

execute cwr2_ol ap_l evel _attribute.create_|level _attribute
("JSMTH, 'PRODUCT_DIM, 'Long Description’, 'TOTALPRCD LVL',
"Long Description’, 'PROD_STD LLABEL', 'Total Product’,
"Long Labels for total of the PRODUCT hierarchy’, TRUE);

CWM2_OLAP_LEVEL_ATTRIBUTE 22-13

Example: Creating a Level Attribute

22-14 Oracle9i OLAP User’s Guide

23

CWM2_OLAP_ MEASURE

The CWW2_OLAP_MEASURE package provides procedures for creating, dropping,
and locking measures. It also provides procedures for setting general properties of
measures.

See Also: Chapter 13, "Using the OLAP Catalog Metadata APIs".
This chapter discusses the following topics:
» Understanding Measures

« Summary of CWM2_OLAP_MEASURE Subprograms

« Example: Creating a Measure

CWM2_OLAP_MEASURE 23-1

Understanding Measures

Understanding Measures

A measure is an OLAP metadata entity. This means that it is a logical object,
identified by name and owner, within the OLAP Catalog.

Measures represent data stored in fact tables. The fact tables may be relational tables
or views. The views may reference data stored in analytic workspaces.

Measures exist within the context of cubes, which fully specify the dimensionality
of the measures’ data. Measures are fully described in "OLAP Metadata Model" on
page 4-8.

Use the procedures in the CWW2_OLAP_MEASURE package to create, drop, and lock
measures, to associate a measure with a cube, and to specify descriptive information
for display purposes.

The parent cube must already exist in the OLAP Catalog before you can create a
measure.

Summary of CWM2_OLAP_MEASURE Subprograms

Table 23-1 CWM2_OLAP_MEASURE Subprograms

Subprogram Description

CREATE_MEASURE Procedure Creates a measure.

on page 23-3

DROP_MEASURE Procedure on Drops a measure.

page 23-4

LOCK_MEASURE Procedure on Locks a measure’s metadata for update.
page 23-4

SET_DESCRI PTI ON Procedur e Sets the description for a measure.

on page 23-5

SET_DI SPLAY_NAME Sets the display name for a measure.
Procedure on page 23-6

SET_MEASURE_NAME Sets the name of a measure.
Procedure on page 23-7

SET_SHORT_DESCRI PTI ON Sets the short description for a measure.

Procedure on page 23-8

23-2 Oracle9i OLAP User’s Guide

Summary of CWM2_OLAP_MEASURE Subprograms

CREATE_MEASURE Procedure

Syntax

Parameters

Exceptions

This procedure creates a new measure in the OLAP Catalog.

A measure can only be created in the context of a cube. The cube must already exist
before you create the measure.

Descriptions and display properties must also be established as part of measure
creation. Once the measure has been created, you can override these properties by
calling other procedures in this package.

CREATE_MEASURE (

cube_owner IN VARCHARZ,
cube_name IN VARCHAR2,
neasure_nane IN VARCHAR?,
di spl ay_nane IN VARCHARZ,
short _description IN VARCHARZ,
description IN VARCHAR?);

Table 23—-2 CREATE_MEASURE Procedure Parameters

Parameter Description

cube_owner Owner of the cube.

cube_nane Name of the cube.

neasur e_nane Name of the measure.

di spl ay_nane Display name for the measure.
short _description Short description of the measure.
descri ption Description of the measure.

Table 23-3 CREATE_MEASURE Procedure Exceptions

Exception Description

no_access_privil eges User does not have the necessary privileges. User must
be the owner and have the OLAP_DBA role.

cube_not _found Parent cube not found.

CWM2_OLAP_MEASURE 23-3

DROP_MEASURE Procedure

Table 23-3 (Cont.) CREATE_MEASURE Procedure Exceptions

Exception Description

neasur e_al ready_exi sts This measure already exists for this cube.

DROP_MEASURE Procedure

This procedure drops a measure from a cube.

Syntax
DROP_MEASURE (
cube_owner IN VARCHAR?,
cube_nane IN VARCHAR?,
measur e_name IN VARCHAR2);
Parameters
Table 23-4 DROP_MEASURE Procedure Parameters
Parameter Description
cube_owner Owner of the cube.
cube_nane Name of the cube.
measur e_nare Name of the measure to be dropped from the cube.
Exceptions

Table 23-5 DROP_MEASURE Procedure Exceptions

Exception Description

no_access_privil eges User does not have the necessary privileges. User must
be the owner and have the OLAP_DBA role.

cube_not _found Parent cube not found.

nmeasur e_not _f ound Measure not found.

LOCK_MEASURE Procedure

This procedure locks the measure’s metadata for update by acquiring a database
lock on the row that identifies the measure in the CWW2 model table.

23-4 Oracle9i OLAP User’s Guide

Summary of CWM2_OLAP_MEASURE Subprograms

Syntax
LOCK_MEASURE (
cube_owner IN VARCHAR?,
cube_nane IN VARCHAR2.
neasur e_nane IN VARCHAR?,
wait _for_| ock IN BOOLEAN DEFAULT FALSE);
Parameters
Table 23-6 LOCK_MEASURE Procedure Parameters
Parameter Description
cube_owner Owner of the cube.
cube_nane Name of the cube.
neasur e_nane Name of the measure to be locked.
wai t _for_|ock (Optional) Whether or not to wait for the measure to be
available when it is already locked by another user. If you do
not specify a value for this parameter, the procedure does not
wait to acquire the lock.
Exceptions

Table 23—7 LOCK_MEASURE Procedure Exceptions

Exception Description

no_access_pri vil eges User does not have the necessary privileges. User must be the
owner and have the OLAP_DBA role.

cube_not _found Parent cube not found.

neasur e_not _f ound Measure not found.

SET DESCRIPTION Procedure

This procedure sets the description for a measure.

CWM2_OLAP_MEASURE 23-5

SET_DISPLAY_NAME Procedure

Syntax
SET_DESCRI PTI ON (
cube_owner IN VARCHAR?,
cube_name IN VARCHAR?,
neasure nane IN VARCHARZ,
description IN VARCHAR?) ;
Parameters
Table 23—-8 SET_DESCRIPTION Procedure Parameters
Parameter Description
cube_owner Owner of the cube.
cube_nane Name of the cube.
neasur e_nane Name of the measure.
description Description of the measure.
Exceptions

Table 23—-9 SET_DESCRIPTION Procedure Exceptions

Exception Description

no_access_privil eges User does not have the necessary privileges. User must
be the owner and have the OLAP_DBA role.

cube_not _found Parent cube not found.

neasur e_not _f ound Measure not found.

SET_DISPLAY_NAME Procedure

This procedure sets the display name for a measure.

23-6 Oracle9i OLAP User's Guide

Summary of CWM2_OLAP_MEASURE Subprograms

Syntax
SET DI SPLAY_NAME (
cube_owner IN VARCHAR?,
cube_nane IN VARCHAR?,
neasure_nane IN VARCHARZ,
display_name IN VARCHARZ);
Parameters
Table 23-10 SET_DISPLAY_NAME Procedure Parameters
Parameter Description
cube_owner Owner of the cube.
cube_nane Name of the cube.
neasur e_nane Name of the measure.
di spl ay_nane Display name for the measure.
Exceptions

Table 23-11 SET_DISPLAY_NAME Procedure Exceptions

Exception

Description

no_access_privil eges

cube_not _found

nmeasur e_not _f ound

User does not have the necessary privileges. User must be
the owner and have the OLAP_DBA role.

Parent cube not found.

Measure not found.

SET MEASURE_NAME Procedure

This procedure sets the name for a measure.

CWM2_OLAP_MEASURE 23-7

SET_SHORT_DESCRIPTION Procedure

Syntax
SET_MEASURE_NAME (
cube_owner IN VARCHAR?,
cube_name IN VARCHAR?,
neasur e_nane IN VARCHAR?,
set _cube_nane IN VARCHAR?);
Parameters
Table 23-12 SET_MEASURE_NAME Procedure Parameters
Parameter Description
cube_owner Owner of the cube.
cube_nane Name of the cube.
measur e_nare Original name of the measure.
set _cube_nane New name for the measure.
Exceptions

Table 23-13 SET_MEASURE_NAME Procedure Exceptions

Exception Description

no_access_privil eges User does not have the necessary privileges. User must be
the owner and have the OLAP_DBA role.

cube_not _found Parent cube not found.

neasur e_not _f ound Measure not found.

SET SHORT DESCRIPTION Procedure

This procedure sets the short description for a cube.

23-8 Oracle9i OLAP User’s Guide

Example: Creating a Measure

Syntax

Parameters

Exceptions

SET_DESCR! PTI ON (

cube_owner IN VARCHAR?,
cube_nane IN VARCHAR?,
neasur e_nane IN VARCHARZ,
short _description IN VARCHAR?) ;

Table 23-14 SET_SHORT_DESCRIPTION Procedure Parameters

Parameter Description

cube_owner Owner of the cube.

cube_nane Name of the cube.

neasur e_nane Name of the measure.
short_description Short description of the measure.

Table 23-15 SET_SHORT_DESCRIPTION Procedure Exceptions

Exception Description

no_access_privil eges User does not have the necessary privileges. User must
be the owner and have the OLAP_DBA role.

cube_not _found Parent cube not found.

nmeasur e_not _f ound Measure not found.

Example: Creating a Measure

The following statements create the SALES_ AMOUNT and SALES_QUANTI TY
measures for the SALES_CUBE cube.

execut e cwn®2_ol ap_neasur e. cr eat e_neasur e
("ISMTH, 'SALES ABE, 'SALES AMONT, ’Sales Amount’,
'$ Sles’, 'Dollar Sales’);
execut e cwi_ol ap_neasur e. cr eat e_neasur e
("IJSMTH, ’'SALES ABE, 'SALES QUANTITY, 'Sales Quantity’,
"Sales Quantity’, 'Quantity of Itens Sold');

CWM2_OLAP_MEASURE 23-9

Example: Creating a Measure

23-10 Oracle9i OLAP User’s Guide

24

CWM2_OLAP_METADATA REFRESH

The CWW2_COLAP_METADATA REFRESH package provides a procedure that
refreshes a set of metadata tables for the OLAP API.

This chapter discusses the following topics:
« The OLAP API Metadata Reader Views
= Summary of CWM2_OLAP_METADATA_REFRESH Subprograms

CWM2_OLAP_METADATA_REFRESH 24-1

The OLAP API Metadata Reader Views

The OLAP API Metadata Reader Views

The Metadata Reader views present a read API to the OLAP Catalog. These views
are structured to facilitate queries by the OLAP API Metadata Reader.

The Metadata Reader views, unlike the OLAP Catalog views described in
Chapter 14, "Viewing OLAP Catalog Metadata", are not automatically refreshed
when changes are made to the metadata.

The Metadata Reader views have public synonyms with the prefix MRV_CQOLAP. The
union views have public synonyms with the prefix ALL_OLAP2. More than half of
the MRV_CLAP views have the same name and column structure as the
corresponding ALL_OLAP2 views.

The MRV_COLAP views and the ALL_OLAP2 views rely on separate sets of metadata
tables. Whereas the tables that underlie the ALL_OLAP views are populated
automatically, the tables that underlie the MRV_OLAP views must be explicitly
refreshed whenever changes are made to the metadata.

24-2 Oracle9i OLAP User's Guide

Summary of CWM2_OLAP_METADATA_REFRESH Subprograms

Summary of CWM2_OLAP_METADATA_REFRESH Subprograms

Table 24-1 CWM2_OLAP_METADATA REFRESH Subprograms

Subprogram Description
MR_REFRESH Procedure Refreshes the metadata tables used by the OLAP APIL

MR_REFRESH Procedure

This procedure refreshes the metadata tables that underlie the MRV_OLAP views, as
described in "The OLAP API Metadata Reader Views" on page 24-2.

Execute MR_REFRESH as the final statement in any script that creates, drops, or
updates OLAP Catalog metadata for the OLAP APL

The MR_REFRESH procedure includes a COMMIT. The updates to the metadata
tables are saved permanently in the database.

Syntax
MR_REFRESH;

CWM2_OLAP_METADATA_REFRESH 24-3

MR_REFRESH Procedure

24-4 Oracle9i OLAP User’s Guide

25

CWM2_OLAP_PC_TRANSFORM

The CWW2_OLAP_PC_TRANSFORMpackage contains a procedure for generating a
SQL script that creates a solved, level-based dimension table from a parent-child
dimension table. .

After running the script and creating the new table, you can define OLAP metadata
so that OLAP API applications can access the dimension.

See Also:
« Chapter 4, "Designing Your Database for OLAP" for information about
types of data warehouse tables supported by OLAP Catalog metadata.

« Chapter 20, "CWM2_OLAP_HIERARCHY" for information about
creating OLAP Catalog metadata for dimension hierarchies.

This chapter discusses the following topics:

Prerequisites

Parent-Child Dimensions

Solved, Level-Based Dimensions

Example: Creating a Solved, Level-Based Dimension Table

Summary of CWM2_OLAP_PC_TRANSFORM Subprograms

CWM2_OLAP_PC_TRANSFORM

25-1

Prerequisites

Prerequisites

Before running the CWW2_CLAP_PC_TRANSFORM CREATE_SCRI PT procedure,
ensure that the RDBMS is enabled to write to a file. The ut | _fi | e_di r parameter
must be set to a valid directory, as described in "Initialization Parameters for Oracle
OLAP" on page 6-3.

A parent-child dimension table must exist and be accessible to the CWW2_OLAP_PC _
TRANSFORMCREATE_SCRI PT procedure.

Parent-Child Dimensions

A parent-child dimension table is one in which the hierarchical relationships are
defined by a parent column and a child column. Since the hierarchy is defined by
the relationship between the values within two columns, a parent-child dimension is
sometimes referred to as having a value-based hierarchy.

Figure 25-1, "Sample Parent-Child Dimension Table Columns" illustrates the
relationships between the values in the child and parent columns. A description
column, which is an attribute of the child, is also included.

Figure 25-1 Sample Parent-Child Dimension Table Columns

CH LD PARENT DESCRI PTI ON

Wr | d VWrl d

USA Worl d United States of Anerica
Nor t heast USA North East Regi on
Sout heast USA South East Region
MA Nor t heast Massachusetts
Bost on MA Boston, MA

Burli ngton MA Burlington, MA
NY Nort heast New York State
New York City NY New York, NY

G Sout heast Ceorgia

Atlanta GA Atlanta, GA
Canada Wor | d Canada

If you choose to create OLAP Catalog metadata to represent a parent-child
dimension, set the sol ved_code for the hierarchy to SOLVED, VALUE_BASED, as
described in Chapter 20, "CWM2_OLAP_HIERARCHY".

25-2 Oracle9i OLAP User’s Guide

Solved, Level-Based Dimensions

Note:

You can create OLAP Catalog metadata to represent

value-based hierarchies, but this type of hierarchy is not accessible
to applications that use the OLAP APL

Solved, Level-Based Dimensions

The script generated by OLAP_PC_TRANSFORM CREATE_SCRI PT creates a table
that stores the values from the parent-child table in levels.

The resulting level-based dimension table includes the full lineage of every level
value in every row. This type of dimension table is solved, because the fact table
related to this dimension includes embedded totals for all level combinations.

If you want to enable parent-child dimension tables for access by the OLAP API,
you must convert them to solved, level-based dimension tables. The OLAP API
requires that dimensions have levels and that they include a GID (Grouping ID)
column and an Embedded Total (ET) key column. GIDs and ET key columns are
described in Example: Creating a Solved, Level-Based Dimension Table.

Figure 25-2, "Sample Solved, Level-Based Dimension Table Columns" illustrates
how the parent-child relationships in Figure 25-1 would be represented as solved

levels.

Figure 25-2 Sample Solved, Level-Based Dimension Table Columns
TOT_GEOG COUNTRY REG ON

Wor | d USA
Wor |l d USA
Wor | d USA
Worl d USA
Wrl d USA
Worl d USA
Wor |l d USA
Wor |l d USA
Wor |l d USA
Wrl d USA
Wrl d Canada
Wr | d

Nor t heast
Nor t heast
Nor t heast
Sout heast
Nor t heast
Nor t heast
Sout heast
Nor t heast
Sout heast

STATE A TY

MA Boston

MA Burlington
NY New York Gty
GA Alanta

MA

NY

A

DESCRI PTI ON
Boston, MA
Burlington, MA
New York, NY
Atlanta, GA
Massachusetts
New York State
Ceorgia

North East Region
South East Region
United States of Anerica
Canada

Wr | d

When creating OLAP Catalog metadata to represent a solved, level-based
dimension hierarchy, specify a sol ved_code of SOLVED, LEVEL_BASED, as
described in Chapter 20, "CWM2_OLAP_HIERARCHY".

CWM2_OLAP_PC_TRANSFORM

25-3

Example: Creating a Solved, Level-Based Dimension Table

Example: Creating a Solved, Level-Based Dimension Table

Assuming a parent-child dimension table with the PARENT and CHI LD columns
shown in Figure 25-1, you could use a command like the following to represent
these columns in a solved, level-based dimension table.

execute cwr2_ol ap_pc_transformcreate_script
(' /dat1/scripts/nyscripts’ ,
"jsmth
"input_thl’ |
" PARENT" ,
"CHLD ,
"output _thl'
"jsmth_data');

This statement creates a script in the directory / dat 1/ scri pt s/ myscri pts. The
script will convert the parent-child table i nput _t bl to the solved, level-based table
out put _t bl . Both tables are in the j smi t h_dat a tablespace of thej smi t h
schema.

You can run the resulting script with the following command.

@r eate_output _thl

You can view the resulting table with the following command.

select * fromoutput_thl view

The resulting table would look like this.
G D SHORT_DESC LONG_DESC CH LD1 CHILD2 CHILD3 CH LD4 CH LD5

0 Boston Bost on World USA Nort heast MA Bost on

0 Burlington Burlington World USA Nort heast MA Burlington
0 New York Gty New York City Wrld USA Nort heast NY New York City
0 Atlanta Al anta World USA Sout heast GA Atlanta

1 M MA World USA Nort heast MA

1 Ny MA World USA Nort heast NY

1 GA A World USA Sout heast GA

3 Northeast Nor t heast World USA Nor t heast

3 Sout heast Sout heast World USA Sout heast

7 USA USA World USA

7 Canada Canada Wrld Canada

15 Wrld Wor | d Wor | d

25-4 Oracle9i OLAP User’s Guide

Summary of CWM2_OLAP_PC_TRANSFORM Subprograms

Grouping ID Column

The script automatically creates a GID column, as required by the OLAP API. The
GID identifies the hierarchy level associated with each row by assigning a zero to
each non-null value and a one to each null value in the level columns. The resulting
binary number is the value of the GID. For example, a GID of 3 is assigned to the
row with the level values World, USA, Northeast, since the three highest levels are
assigned zeros and the two lowest levels are assigned ones.

CH LDl CH LD2 CH LD3 CHI LD4 CHILD5

Wrld USA Nor t heast
0 0 0 1 1

Embedded Total Key Column

The script automatically generates columns for long description and short
description. If you have columns in the input table that contain this information,
you can specify them as parameters to the CREATE_SCRI PT procedure.

If you do not specify a column for the short description, the script creates the
column and populates it with the lowest-level child value represented in each row.
If you do not specify a column for the long description, the script simply replicates
the short description.

The ET key column required by the OLAP APl is the short description column that
is created by default.

Summary of CWM2_OLAP_PC_TRANSFORM Subprograms

Table 25-1 CWM2_OLAP_PC_TRANSFORM

Subprogram Description

CREATE_SCRI PT Procedure on Generates a script that converts a parent-child
page 25-5 table to an embedded-total table.

CREATE_SCRIPT Procedure

This procedure generates a script that converts a parent-child dimension table to an
embedded-total dimension table.

CWM2_OLAP_PC_TRANSFORM 25-5

CREATE_SCRIPT Procedure

Syntax
CREATE_SCRI PT (
directory IN VARCHAR?,
schema IN VARCHAR?,
pc_table IN VARCHARZ,
pc_par ent IN VARCHAR?,
pc_child IN VARCHARZ,
slb_table IN VARCHARZ,
sl b_t abl espace IN VARCHARZ,
pc_root IN VARCHAR2 DEFAULT NULL,
nunber _of levels IN NUMBER DEFAULT NULL,
| evel _nanes IN VARCHAR2 DEFAULT NULL,
short_description IN VARCHAR2 DEFAULT NULL,
long_description IN VARCHAR2 DEFAULT NULL,
attribut e_nanes IN VARHAR2 DEFALLT NULL);
Parameters

Table 25—-2 CREATE_SCRIPT Procedure Parameters

Parameter Description

directory Full path of the directory that will contain the generated script.

schena Schema containing the parent-child table. This schema will also
contain the solved, level-based table.

pc_table Name of the parent-child table.

pc_parent Name of the column in pc_t abl e that contains the parent
values .

pc_child Name of the column in pc_t abl e that contains the child values.

slb_table Name of the solved, level-based table that will be created.

sl b_t abl espace

pc_r oot

25-6 Oracle9i OLAP User’s Guide

Name of the tablespace where the solved, level-based table will
be created.

One of the following:

nul | - Root of the parent-child hierarchy is identified by nul |
in the parent column. (default)

condi ti on - Root of the parent-child hierarchy is a condition,
for example:

"long_des = "All Countries"’

Summary of CWM2_OLAP_PC_TRANSFORM Subprograms

Usage Notes

Table 25-2 (Cont.) CREATE_SCRIPT Procedure Parameters

Parameter Description

nunber _of | evels One of the following:
nul | - The number of levels in the solved, level-based table
will be all the levels of the hierarchy in the parent-child table.
(default)

nunber - The number of levels to be created in the solved,
level-based table.

| evel _names One of the following:

nul | - The column names in the solved, level-based table will
be the source child column name concatenated with the level
number. (default)

l'i st - Acomma-separated list of column names for the solved,
level-based table.

short _description One of the following:

nul | - There is no short description in the parent-child table.
The highest level non-null child value in each row of the solved,
level-based table will be used as the short description. This
constitutes the ET key column (default)

col um nane - Name of the column in the parent-child table
that contains the short description. This column will be copied
from the parent-child table to the solved, level-based table.

| ong_descri ption One of the following:

nul | - There is no long description in the parent-child table.
The short description will be used. (default)

col um name - Name of the column in the parent-child table
that contains the long description. This column will be copied
from the parent-child table to the solved, level-based table.

attribute_names One of the following:

nul | - There are no attributes in the parent-child table.
(default)

l'i st - A comma-separated list of attribute columns in the
parent-child table. These columns will be copied from the
parent-child table to the solved, level-based table

1. If a table with the same name as the solved, level-based table already exists, the
script will delete it.

CWM2_OLAP_PC_TRANSFORM 25-7

CREATE_SCRIPT Procedure

2. You can reduce the time required to generate the script by specifying the
number of levels in the nunber _of _| evel s parameter. If you do not specify a
value for this parameter, the CREATE_SCRI PT procedure calculates all the
levels from the parent-child table.

3. To define additional characteristics of the solved, level-based table, you can
modify the generated script file before executing it.

25-8 Oracle9i OLAP User’s Guide

26

CWM2 _OLAP TABLE MAP

The CWW2_COLAP_TABLE_MAP package provides procedures for mapping OLAP
metadata entities to columns in your data warehouse dimension tables and fact
tables.

See Also: Chapter 13, "Using the OLAP Catalog Metadata APIs"

This chapter discusses the following topics:

« Understanding OLAP Metadata Mapping

« Summary of CWM2_OLAP_TABLE_MAP Subprograms
« Example: Mapping a Dimension

« Example: Mapping a Cube

CWM2_OLAP_TABLE_MAP 26-1

Understanding OLAP Metadata Mapping

Understanding OLAP Metadata Mapping

The CWW2_OLAP_TABLE_MAP package provides procedures for linking OLAP
metadata entities to columns in fact tables and dimension tables and for
establishing the join relationships between a fact table and its associated dimension
tables.

Dimension levels and level attributes are mapped to columns in dimension tables.
Typically, they are mapped by hierarchy. Measures are mapped to columns in fact
tables.

The join relationship between the fact table and dimension tables may specified for
unsolved data stored in a single fact table, for solved data stored in one fact table
per hierarchy combination, or for solved data stored in a single fact table.

See Also: "Mapping OLAP Metadata" on page 13-4.

Summary of CWM2_OLAP_TABLE_MAP Subprograms

Table 26-1 CWM2_OLAP_TABLE_MAP

Subprogram Description

MAP_DI MIBL_HI ERLEVELATTR ~ Maps a hierarchical level attribute to a column in
Procedure on page 26-3 a dimension table.

MAP_DI MTBL_HI ERLEVEL Maps a hierarchical level to one or more columns
Procedure on page 26-5 in a dimension table.

MAP_DI MIBL_HI ERSORTKEY Sorts the members of a hierarchy within a column
Procedure on page 26-6 of a dimension table.

MAP_DI MTBL_LEVELATTR Maps a non-hierarchical level attribute to a
Procedure on page 26-7 column in a dimension table

MAP_DI MTBL_LEVEL Maps a non-hierarchical level to one or more
Procedure on page 26-9 columns in a dimension table.
MAP_FACTTBL_LEVELKEY Maps the dimensions of a cube to a fact table.
Procedure on page 26-10

MAP_FACTTBL_MEASURE Maps a measure to a column in a fact table.
Procedure on page 26-12

REMOVENAP_DI MIBL _ Removes the mapping of a hierarchical level

H ERLEVELATTR Procedure attribute from a column in a dimension table.
on page 26-13

26-2 Oracle9i OLAP User’s Guide

Summary of CWM2_OLAP_TABLE_MAP Subprograms

Table 26-1 (Cont) CWM2_OLAP_TABLE_MAP

Subprogram Description

REMOVENVAP_DI MTBL _ Removes the mapping of a hierarchical level from
HI ERLEVEL Procedure on one or more columns in a dimension table.

page 26-15

REMOVENAP_DI MTBL _ Removes custom sorting criteria associated with
HI ERSORTKEY Procedure on columns in a dimension table.

page 26-16

REMOVENVAP_DI MTBL_ Removes the mapping of a non-hierarchical level
LEVELATTR Procedure on attribute from a column in a dimension table.

page 26-17

REMOVENVAP_DI MIBL_LEVEL Removes the mapping of a non-hierarchical level from
Procedure on page 26-18 one or more columns in a dimension table.
REMOVENVAP_FACTTBL _ Removes the mapping of a cube’s dimensions
LEVELKEY Procedure on from a fact table.

page 26-19

REMOVEVAP_FACTTBL_MEASURE Removes the mapping of a measure from a column in a
Procedure on page 26-20 fact table.

MAP_DIMTBL_HIERLEVELATTR Procedure

This procedure maps a level attribute to a column in a dimension table.

The attribute being mapped is associated with a level in the context of a hierarchy.

CWM2_OLAP_TABLE_MAP 26-3

MAP_DIMTBL_HIERLEVELATTR Procedure

Syntax
MAP_DI MTBL_H ERLEVELATTR (
di mensi on_owner IN VARCHAR?,
di mensi on_name IN VARCHAR?,
di nensi on_attri but e_nane IN VARCHARZ,
hi erarchy_nane IN VARCHARZ,
| evel _nanme IN VARCHAR?,
| evel _attribute_nane IN VARCHARZ,
tabl e_owner IN VARCHAR?,
tabl e_nane IN VARCHAR?,
attrcol IN VARHAR?);
Parameters
Table 26—2 MAP_DIMTBL_HIERLEVELATTR Procedure Parameters
Parameter Description
di nensi on_owner Owner of the dimension.
di nensi on_nane Name of the dimension.
di mension_attribute_ Name of the dimension attribute.
nane
hi er ar chy_nane Name of the hierarchy.
| evel _nanme Name of the level.
| evel _attribute_nanme Name of the level attribute associated with this level.
t abl e_owner Owner of the dimension table.
t abl e_name Name of the dimension table.
attrcol Column in the dimension table to which this level attribute
should be mapped.
Exceptions

Table 26-3 MAP_DIMTBL_HIERLEVELATTR Procedure Exceptions

Exception

Description

no_access_privil eges

di mensi on_not _f ound

26-4 Oracle9i OLAP User’s Guide

User does not have the necessary privileges. User must
be the dimension owner and have the OLAP_DBA role.

Dimension not found.

Summary of CWM2_OLAP_TABLE_MAP Subprograms

Table 26-3 (Cont.) MAP_DIMTBL_HIERLEVELATTR Procedure Exceptions

Exception

Description

hi erarchy_not _found
| evel _not_found
attribute_not_found
t abl e_not _f ound

col umm_not _f ound

Hierarchy not found.

Level not found.

Level attribute not found.
Dimension table not found.

Dimension table column not found.

MAP_DIMTBL_HIERLEVEL Procedure

This procedure maps a level to one or more columns in a dimension table.

Syntax

Parameters

The level being mapped is identified within the context of a hierarchy.

MAP_DI MTBL_H ERLEVEL (
di mensi on_owner
di mensi on_name
hi erar chy_nane
| evel _name
tabl e_owner
t abl e_name
keycol
par ent col

IN VARCHARZ,
IN VARCHARZ,
IN VARCHARZ,
IN VARCHARZ,
IN VARCHARZ,
IN VARCHARZ,
IN VARCHAR?,

IN VARCHAR2 DEFAULT NULL);

Table 26-4 MAP_DIMTBL_HIERLEVEL Procedure Parameters

Parameter

Description

di mensi on_owner
di nensi on_nane
hi er ar chy_nane
| evel _nanme
t abl e_owner

t abl e_nane

Owner of the dimension.
Name of the dimension.
Name of the hierarchy.

Name of the level.

Owner of the dimension table.

Name of the dimension table.

CWM2_OLAP_TABLE_MAP 26-5

MAP_DIMTBL_HIERSORTKEY Procedure

Table 26—-4 (Cont.) MAP_DIMTBL_HIERLEVEL Procedure Parameters

Parameter Description

keycol Column in the dimension table to which this level should be
mapped. This column will be the key for this level column in
the fact table.

If the level is stored in more than one column, separate the
column names with commas. These columns will be the
multicolumn key for these level columns in the fact table.

par ent col Column that stores the parent level in the hierarchy. If you do
not specify this parameter, the level is the root of the
hierarchy.

Exceptions

Table 26-5 MAP_DIMTBL_HIERLEVEL Procedure Exceptions

Exception Description

no_access_privil eges User does not have the necessary privileges. User must
be the owner and have the OLAP_DBA role.

di nensi on_not _found Dimension not found.

hi erarchy_not _found Hierarchy not found.

| evel _not _f ound Level not found.

t abl e_not _f ound Dimension table not found.

col um_not _f ound Dimension table column not found.

MAP_DIMTBL_HIERSORTKEY Procedure

This procedure specifies how to sort the members of a hierarchy within a column of
a dimension table. The column may be the key column or it may be a related
attribute column. Custom sorting can specify that the column be sorted in
ascending or descending order, with nulls first or nulls last.

Custom sorting information is optional and can be applied at multiple levels of a
dimension.

26-6 Oracle9i OLAP User's Guide

Summary of CWM2_OLAP_TABLE_MAP Subprograms

Syntax
MAP_DI MTBL_H ERSORTKEY (
di mensi on_owner IN VARCHAR?,
di mensi on_name IN VARCHAR?,
hi er ar chy_nane IN VARCHARZ,
sortcol IN VARCHAR?);
Parameters
Table 26-6 MAP_DIMTBL_HIERSORTKEY Procedure Parameters
Parameter Description
di nensi on_owner Owner of the dimension.
di nensi on_nane Name of the dimension.
hi er ar chy_nane Name of the hierarchy.
sortcol A string specifying how to sort the values stored in a given
column of a dimension table. The string specifies the table
name, the column name, whether to sort in ascending or
descending order, and whether to place nulls first or last.
The string should be enclosed in single quotes, and it should
be in the following form.
TBL: t abl eowner . t abl enanme/ COL: col utmnane
/ ORD: ASC| DSC/ NULL: FI RST| LAST
Exceptions

Table 26—7 MAP_DIMTBL_HIERSORTKEY Procedure Exceptions

Exception

Description

no_access_privil eges

di nensi on_not _found

hi erarchy_not _found

User does not have the necessary privileges. User must
be the owner and have the OLAP_DBA role.

Dimension not found.

Hierarchy not found.

MAP_DIMTBL_LEVELATTR Procedure

This procedure maps a level attribute to a column in a dimension table.

The attribute being mapped is associated with a level that has no hierarchical
context. Typically, this level is the only level defined for this dimension.

CWM2_OLAP_TABLE_MAP 26-7

MAP_DIMTBL_LEVELATTR Procedure

Syntax
MAP_Di MTBL_LEVELATTR (
di mensi on_owner IN VARCHAR?,
di mensi on_name IN VARCHAR?,
di mensi on_attri bute_name IN VARCHARZ,
| evel _nane IN VARCHARZ,
| evel _attribute_nane IN VARCHAR?,
t abl e_owner IN VARCHARZ,
tabl e_nane IN VARCHAR?,
attrcol IN VARHAR?) ;
Parameters
Table 26-8 MAP_DIMTBL_LEVELATTR Procedure Parameters
Parameter Description
di nensi on_owner Owner of the dimension.
di nensi on_nane Name of the dimension.
di nension_attri bute_ Name of the dimension attribute.
nane
| evel _nane Name of the level.
| evel _attribute_nanme Name of the level attribute associated with this level.
t abl e_owner Owner of the dimension table.
t abl e_nane Name of the dimension table.
attrcol Column in the dimension table to which this level attribute
should be mapped.
Exceptions

Table 269 MAP_DIMTBL_LEVELATTR Procedure Exceptions

Exception Description

no_access_privil eges User does not have the necessary privileges. User must
be the dimension owner and have the OLAP_DBA role.

di nensi on_not _found Dimension not found.

| evel _not_found Level not found.

attribute_not_found Level attribute not found.

26-8 Oracle9i OLAP User’s Guide

Summary of CWM2_OLAP_TABLE_MAP Subprograms

Table 269 (Cont.) MAP_DIMTBL_LEVELATTR Procedure Exceptions

Exception Description
tabl e_not _found Dimension table not found
col um_not _f ound Dimension table column not found.

MAP_DIMTBL_LEVEL Procedure

Syntax

Parameters

This procedure maps a level to one or more columns in a dimension table.

The level being mapped has no hierarchical context. Typically, this level is the only
level defined for this dimension.

MAP_DI MIBL_LEVEL (

di mensi on_owner IN VARCHAR?,
di mensi on_nane IN VARCHAR?,

| evel _name IN VARCHAR?,

t abl e_owner IN VARCHARZ,
t abl e_name IN VARCHARZ,
keycol IN VARHAR?);

Table 26-10 MAP_DIMTBL_LEVEL Procedure Parameters

Parameter Description

di nensi on_owner Owner of the dimension.

di nensi on_nane Name of the dimension.

| evel _nanme Name of the level.

t abl e_owner Owner of the dimension table.

t abl e_name Name of the dimension table.

keycol Column in the dimension table to which this level should be
mapped. This column will be the key for this level column in
the fact table.

If the level is stored in more than one column, separate the
column names with commas. These columns will be the
multicolumn key for these level columns in the fact table.

CWM2_OLAP_TABLE_MAP 26-9

MAP_FACTTBL_LEVELKEY Procedure

Exceptions

Table 26-11 MAP_DIMTBL_LEVEL Procedure Exceptions

Exception Description

no_access_privil eges User does not have the necessary privileges. User must
be the owner and have the OLAP_DBA role.

di nensi on_not _found Dimension not found.

| evel _not_found Level not found.

t abl e_not _f ound Dimension table not found.

col um_not _f ound Dimension table column not found.

MAP_FACTTBL_LEVELKEY Procedure

This procedure creates the join relationships between a fact table and a set of
dimension tables. A join must be specified for each of the dimensions of the cube.
Each dimension is joined in the context of one of its hierarchies.

For example, if you had a cube with three dimensions, and each dimension had
only one hierarchy, you could fully map the cube with one call to MAP_FACTTBL _
LEVELKEY.

However, if you had a cube with three dimensions, but two of the dimensions each
had two hierarchies, you would need to call MAP_FACTTBL _LEVELKEY four times
to fully map the cube. For dimensions Di i, Di n®2, and Di n8, where Di ml and

Di B each have two hierarchies, you would specify the following mapping strings
in each call to MAP_FACTTBL_LEVELKEY, as shown below.

ODnm_Herl Dn2 Her, On8 Herl
ODnm_Herl Dn2 Her, On8B Her2
ODnm_Her2, Dn2 Her, On8 Herl
Dnl Her2, Dn2 Her, On8 Her2

Typically the data for each hierarchy combination would be stored in a separate fact
table.

For more information, see"Joining Fact Tables with Dimension Tables" on page 13-4.

26-10 Oracle9i OLAP User’'s Guide

Summary of CWM2_OLAP_TABLE_MAP Subprograms

Syntax
MAP_FACTTBL_LEVELKEY (

cube_owner IN VARCHAR?,

cube_nane IN VARCHAR?,

facttabl e_owner IN VARCHARZ,

facttabl e_name IN VARCHAR?,

st or et ype IN VARCHAR2,

di nkeynap IN VARCHAR2,

di mkt ype IN VARCHAR2 DEFAULT NULL);
Parameters

Table 26-12 MAP_FACTTBL_LEVELKEY Procedure Parameters

Parameter Description
cube_owner Owner of the cube.
cube_nane Name of the cube.
facttabl e_owner Owner of the fact table.
facttabl e_nane Name of the fact table.
storetype One of the following:
IC_IQ/\EST LEVEL, for a fact table that stores only lowest level
ata

ET, for a fact table that stores embedded totals in addition to
lowest level data

RCOLLED UP, for an embedded total fact table with key
columns for all levels

di nkeynap A string specifying the mapping for each dimension of the
data in the fact table. For each dimension you must specify a
hierarchy and the lowest level to be mapped within that
hierarchy.

Enclose the string in single quotes, and separate each
dimension specification with a semicolon. Each dimension
specification must be in the following form:

DI M di mane/ H ER: hi er nane/ @ D: col unmnane/ LVL:
| evel nane/ COL: col utmnane;

This string must also be specified as an argument to the MAP_
FACTTBL_MEASURE procedure.

di nktype This parameter is not currently used.

CWM2_OLAP_TABLE_MAP 26-11

MAP_FACTTBL_MEASURE Procedure

Exceptions

Table 26-13 MAP_FACTTBL_LEVELKEY Procedure Exceptions

Exception

Description

no_access_privil eges

cube_not _found

fact _table_not_found

User does not have the necessary privileges. User must
be the dimension owner and have the OLAP_DBA role.

Cube not found.

Fact table not found.

MAP_FACTTBL_MEASURE Procedure

This procedure maps a measure to a column in a fact table.

Syntax

MAP_FACTTBL_MEASURE (
cube_owner
cube_name
neasur e_nane
facttabl e_owner
facttabl e_name
col unm_nane
di mkeynap

Parameters

IN VARCHAR?,
IN VARCHAR?,
IN VARCHARZ,
IN VARCHAR?,
IN VARCHAR?,
IN VARCHAR,
IN VARCHAR?);

Table 26-14 MAP_FACTTBL_MEASURE Procedure Parameters

Parameter

Description

cube_owner
cube_nane
measur e_nane
facttabl e_owner
facttabl e_nane

col um_nane

26-12 Oracle9i OLAP User’s Guide

Owner of the cube.

Name of the cube.

Name of the measure to be mapped.
Owner of the fact table.

Name of the fact table.

Column in the fact table to which the measure will be
mapped.

Summary of CWM2_OLAP_TABLE_MAP Subprograms

Table 26-14 (Cont.) MAP_FACTTBL_MEASURE Procedure Parameters

Parameter Description

di nkeynmap A string specifying the mapping for each of the measure’s
dimensions. For each dimension you must specify a hierarchy
and the lowest level to be mapped within that hierarchy.

Enclose the string in single quotes, and separate each
dimension specification with a semicolon. Each dimension
specification must be in the following form:

DI M di mane/ Hl ER: hi er nane/ G D: col utmnane/ LVL:
| evel nane/ COL: col utmnane;

This string must also be specified as an argument to the MAP_
FACTTBL_HI ERLEVELKEY procedure.

Exceptions

Table 26-15 MAP_FACTTBL_MEASURE Procedure Exceptions

Exception Description

no_access_privil eges User does not have the necessary privileges. User must
be the dimension owner and have the OLAP_DBA role.

cube_not _found Cube not found.

fact _table_not_found Fact table not found.

neasur e_not _f ound Measure not found.

col um_not _f ound Fact table column not found.

REMOVEMAP_DIMTBL_HIERLEVELATTR Procedure

This procedure removes the relationship between a level attribute and a column in a
dimension table. The attribute is identified by the hierarchy that contains its
associated level.

Upon successful completion of this procedure, the level attribute is a purely logical
metadata entity. It has no data associated with it.

CWM2_OLAP_TABLE_MAP 26-13

REMOVEMAP_DIMTBL_HIERLEVELATTR Procedure

Syntax

REMOVEMAP_DI MTBL_HI ERLEVELATTR (
di mensi on_owner IN VARCHAR?,
di mensi on_name IN VARCHAR?,
di nensi on_attri but e_nane IN VARCHARZ,
hi erarchy_nane IN VARCHARZ,
| evel _nanme IN VARCHARZ,
| evel _attribute_nane IN VARCHAR?) ;

Parameters

Table 26-16 REMOVEMAP_DIMTBL_HIERLEVELATTR Procedure Parameters

Parameter Description

di nensi on_owner Owner of the dimension.
di nensi on_nane Name of the dimension.

di nension_attri bute_ Name of the dimension attribute.
nanme

hi er ar chy_nane Name of the hierarchy.
| evel _nane Name of the level.

| evel _attribute_name Name of the level attribute associated with this level.

Exceptions

Table 26-17 REMOVEMAP_DIMTBL_HIERLEVELATTR Procedure Exceptions

Exception Description

no_access_privil eges User does not have the necessary privileges. User must
be the dimension owner and have the OLAP_DBA role.

di nensi on_not _found Dimension not found.

hi erarchy_not _found Hierarchy not found.

| evel _not _found Level not found.

attribute_not_found Level attribute not found.

26-14 Oracle9i OLAP User’s Guide

Summary of CWM2_OLAP_TABLE_MAP Subprograms

REMOVEMAP_DIMTBL_HIERLEVEL Procedure

This procedure removes the relationship between a level of a hierarchy and one or
more columns in a dimension table.

Upon successful completion of this procedure, the level is a purely logical metadata
entity. It has no data associated with it.

Syntax
REMOVENAP_DI MTBL_HI ERLEVEL (
di mensi on_owner IN VARCHARZ,
di mensi on_name IN VARCHARZ,
hi erar chy_name IN VARCHARZ,
| evel _name IN VARCHAR?);
Parameters
Table 26-18 REMOVEMAP_DIMTBL_HIERLEVEL Procedure Parameters
Parameter Description
di nensi on_owner Owner of the dimension.
di nensi on_nane Name of the dimension.
hi er ar chy_nane Name of the hierarchy.
| evel _nane Name of the level.
Exceptions

Table 26-19 REMOVEMAP_DIMTBL_HIERLEVEL Procedure Exceptions

Exception Description

no_access_privil eges User does not have the necessary privileges. User must
be the owner and have the OLAP_DBA role.

di nensi on_not _found Dimension not found.

hi erarchy_not _found Hierarchy not found.

| evel _not_found Level not found.

CWM2_OLAP_TABLE_MAP 26-15

REMOVEMAP_DIMTBL_HIERSORTKEY Procedure

REMOVEMAP_DIMTBL_HIERSORTKEY Procedure

Syntax

Parameters

Exceptions

This procedure removes custom sorting criteria associated with columns in a
dimension table.

REMOVEMAP_Di MTBL_H ERSORTKEY (

di mensi on_owner IN VARCHARZ,
di mensi on_name IN VARCHARZ,
hi erar chy_name IN VARCHAR?);

Table 26-20 REMOVEMAP_DIMTBL_HIERSORTKEY Procedure Parameters

Parameter Description

di nensi on_owner Owner of the dimension.
di nensi on_nane Name of the dimension.
hi er ar chy_nane Name of the hierarchy.

Table 26-21 REMOVEMAP_DIMTBL_HIERSORTKEY Procedure Exceptions

Exception Description

no_access_privil eges User does not have the necessary privileges. User must
be the owner and have the OLAP_DBA role.

di mensi on_not _f ound Dimension not found.

hi er ar chy_not _f ound Hierarchy not found.

26-16 Oracle9i OLAP User’'s Guide

Summary of CWM2_OLAP_TABLE_MAP Subprograms

REMOVEMAP_DIMTBL_LEVELATTR Procedure

Syntax

Parameters

Exceptions

This procedure removes the relationship between a level attribute and a column in a
dimension table.

Upon successful completion of this procedure, the level attribute is a purely logical
metadata entity. It has no data associated with it.

REMOVEMAP_Di MTBL_LEVELATTR (

di mensi on_owner IN VARCHARZ,
di mensi on_name IN VARCHAR?,
di mensi on_attri bute_name IN VARCHARZ,
| evel _nane IN VARCHAR?,
| evel _attribute_nane IN VARHAR?);

Table 26-22 REMOVEMAP_DIMTBL_LEVELATTR Procedure Parameters

Parameter Description
di nensi on_owner Owner of the dimension.
di nensi on_nane Name of the dimension.

di mension_attribute_ Name of the dimension attribute.
name

| evel _nanme Name of the level.

| evel _attribute_nanme Name of the level attribute associated with this level.

Table 26-23 REMOVEMAP_DIMTBL_LEVELATTR Procedure Exceptions

Exception Description

no_access_privil eges User does not have the necessary privileges. User must
be the dimension owner and have the OLAP_DBA role.

di mensi on_not _f ound Dimension not found.

| evel _not _f ound Level not found.

attribute_not_found Level attribute not found.

CWM2_OLAP_TABLE_MAP 26-17

REMOVEMAP_DIMTBL_LEVEL Procedure

REMOVEMAP_DIMTBL_LEVEL Procedure

This procedure removes the relationship between a level and one or more columns
in a dimension table.

Upon successful completion of this procedure, the level is a purely logical metadata
entity. It has no data associated with it.

Syntax
REMOVEMAP_DI MIBL_LEVEL (
di mensi on_owner IN VARCHARZ,
di mensi on_name IN VARCHARZ,
| evel _name IN VARCHAR?) ;
Parameters
Table 26-24 REMOVEMAP_DIMTBL_LEVEL Procedure Parameters
Parameter Description
di nensi on_owner Owner of the dimension.
di nensi on_nane Name of the dimension.
| evel _nanme Name of the level.
Exceptions

Table 26-25 REMOVEMAP_DIMTBL_LEVEL Procedure Exceptions

Exception Description

no_access_privil eges User does not have the necessary privileges. User must
be the owner and have the OLAP_DBA role.

di mensi on_not _f ound Dimension not found.

| evel _not _f ound Level not found.

26-18 Oracle9i OLAP User’s Guide

Summary of CWM2_OLAP_TABLE_MAP Subprograms

REMOVEMAP_FACTTBL_LEVELKEY Procedure

This procedure removes the relationship between the key columns in a fact table
and the level columns of a dimension hierarchy in a dimension table.

Syntax

Parameters

Exceptions

REMOVEMAP_FACTTBL_LEVELKEY (

cube_owner IN
cube_name IN
facttabl e_owner IN
facttabl e_name IN

VARCHARZ,
VARCHARZ,
VARCHARZ,
VARCHAR2 DEFAULT);

Table 26-26 REMOVEMAP_FACTTBL_LEVELKEY Procedure Parameters

Parameter Description
cube_owner Owner of the cube.
cube_nane Name of the cube.
facttabl e_owner Owner of the fact table.
facttabl e_nane Name of the fact table.

Table 26-27 REMOVEMAP_FACTTBL_LEVELKEY Procedure Exceptions

Exception Description

no_access_privil eges User does not have the necessary privileges. User must
be the dimension owner and have the OLAP_DBA role.

cube_not _found Cube not found.

fact _table_not_found Fact table not found.

CWM2_OLAP_TABLE_MAP 26-19

REMOVEMAP_FACTTBL_MEASURE Procedure

REMOVEMAP_FACTTBL_MEASURE Procedure

This procedure removes the relationship between a measure column in a fact table
and a logical measure associated with a cube.

Upon successful completion of this procedure, the measure is a purely logical
metadata entity. It has no data associated with it.

Syntax
REMOVEMAP_FACTTBL_MEASURE (
cube_owner IN VARCHAR2,
cube_name IN VARCHAR2,
neasur e_nane IN VARCHAR?,
facttabl e_owner IN VARCHAR?,
facttabl e_name IN VARCHAR?,
col urm_nane IN VARCHAR2,
di mkeymap IN VARCHAR?) ;
Parameters

Table 26-28 REMOVEMAP_FACTTBL_MEASURE Procedure Parameters

Parameter

Description

cube_owner
cube_nane
nmeasur e_nane
facttabl e_owner
facttabl e_nane
col um_nane

di nkeynmap

Owner of the cube.

Name of the cube.

Name of the measure.

Owner of the fact table.

Name of the fact table.

Column in the fact table to which the measure is mapped.

A string specifying the mapping for each of the measure’s
dimensions. For each dimension you must specify a hierarchy
and the lowest level to be mapped within that hierarchy.

Enclose the string in single quotes, and separate each
dimension specification with a semicolon. Each dimension
specification must be in the following form:

DI M di mane/ H ER: hi er nane/ @ D: col unimnane/ LVL:
| evel nane

This string must also be specified as an argument to the MAP_
FACTTBL_HI ERLEVELKEY procedure.

26-20 Oracle9i OLAP User’s Guide

Example: Mapping a Dimension

Exceptions

Table 26-29 REMOVEMAP_FACTTBL_MEASURE Procedure Exceptions

Exception Description

no_access_privil eges User does not have the necessary privileges. User must
be the dimension owner and have the OLAP_DBA role.

cube_not _found Cube not found.

fact _table_not_found Fact table not found

nmeasur e_not _f ound Measure not found.

col um_not _f ound Fact table column not found.

Example: Mapping a Dimension

The following statements map the four levels of the STANDARD hierarchy in the
XADEMO. PRODUCT_AWdimension to columns in the XADEMO AW VI EW PRODUCT
dimension table. A long description attribute is mapped for each level.

execute cwi2_ol ap_tabl e_map. Map_D nibl _H er Level
(" XADEMD, ' PRODUCT_AW, ' STANDARD , ' L4,
" XADEMD , ' XADEMD AWM EWPRODUCT, 'L4', 'L3');
execute cwn?_ol ap_t abl e_nmap. Map_D nTbl _H erLevel At tr
(" XADEMD , ' PRCDUCT_AW, 'Long Description’, ' STANDARD , ' L4,
"Long Description, ' XADEMD, ' XADEMD AWM EWPR(DUCT, ' PR STD LLABH);

execute cwi2_ol ap_tabl e_map. Map_D nibl _H er Level
(" XADEMD , ' PRODUCT_AW, ' STANDARD, ' L3,
" XADEMD , ' XADEMD AWM EWPRCDUCT, 'L3', 'L2');
execute cwn?_ol ap_t abl e_nmap. Map_D nTbl _H erLevel At tr
(" XADEMD, ' PRCDUCT_AW, ’'Long Description’, 'STANDARD, 'L3,
"Long Description, ' XADEMD, ' XADEMD AWM EWPR(DUCT, ' PR STD LLABH);

execute cwn?_ol ap_t abl e_nmap. Map_D nTbl _H er Level
(" XADEMD , ' PRODUCT_AW, ' STANDARD, 'L2',
" XADEMD , ' XADEMD AWM EWPRCDUCT, 'L2', 'L1');
execute cw2_ol ap tabl e map. Map O nibl _H erlLevel Attr
(" XADEMD , ' PRCDUCT_AW, ’'Long Description’, 'STANDARD, 'L2',
"Long Description, ' XADEMD, ' XADEMD AWM EWPR(DUCT , ' PR STD LLABH ');

execute cwn?_ol ap_t abl e_map. Map_D nTbl _H er Level

(" XADEMD , ’ PRODUCT AW, ’ STANDARD , ' LT,
' XADEMD , ' XADEMD AWM BWPRCDUCT , " L1, null);

CWM2_OLAP_TABLE_MAP 26-21

Example: Mapping a Cube

execute cwn?_ol ap_t abl e_nmap. Map_D nTbl _H erLevel At tr
(" XADEMD , ' PRCDUCT_AW, 'Long Description’, 'STANDARD, 'L1',
"Long Description', 'XADEMD, ' XADEMD AWM EWPRCDUCT , ' PROD STD LLABH');

Example: Mapping a Cube

The following statement maps the dimension join keys for a cube named
ANALYTI C_CUBE_AWin the XADEMOschema. Join key relationships are specified for
four dimension/hierarchy combinations:

PRCDUCT_AW STANDARD
CHANNEL,_ AW STANDARD

TI ME_ AW YTD

GEORAPHY_AW CONSCLI DATED

The fact table is called XADEMO AW SALES VI EW 4. It stores lowest level data and
embedded totals for all level combinations.

execute cwn?_ol ap_t abl e_map. Myp_Fact Tbl _Level Key
(XADEMJ " ANALYTI C_ QUBE AW/, ' XADEMD , ' XADEMD AWSALES M BEW4', " ET ,
' O M XADEMD PRODUCT_AWH ER STANDARD G D PRODUCT_Q O LWL: L4/ OL: PRODUCT_ET;
D M XADEMD CHANNEL. AWH ER STANDARD @ D GHANNEL, G Y LML: STANDARD 1/ GOL: CHANNEL. ET;
D M XADEMD TI ME_AWH ER YTD) @ D TI ME_YTD @ O LWL: L3/ O TI ME_YTD ET;
D M XADEMD GEQGRAPHY_AWH ER GONSOLI DATED @ D GEGG GONS @ D LML: L4/ QO GBEGG GONS ET;) ;

The following statement maps the F. SALES AWmeasure to the SALES column in the
fact table.

execute cwr?_ol ap_t abl e_map. Map_Fact Thl _Measure
(’ XADEMD , ' ANALYTI C OUBE AW, 'F. SALES_AW,
" XADEMD , ' XADEMD AWSALES M EW4', ' SALES ,
' D M XADEMD PRODUCT_AWH ER STAI\DN:D’ LWL L4/ GO PRODUCT _ET,
O M XADEMD CHANNEL._AWH ER STANDARD L\WL: STANDARD 1/ OOL: CHANNEL_ET;
O M XADEMD TI ME_AWH ER YTDY LML L3/ GO TI ME_YTD ET;
D M XADEMD GEOGRAPHY AWH ER QONSCLI DATEDY LML: L4/ Q0L GBOG GONS ET; ') ;

26-22 Oracle9i OLAP User’s Guide

27

CWM2_OLAP_VALIDATE

The. CWW2_OLAP_VALI| DATE package provides procedures for validating OLAP
metadata.

See Also: Chapter 13, "Using the OLAP Catalog Metadata APIs".

This chapter discusses the following topics:

« Summary of CWM2_OLAP_VALIDATE Subprograms

CWM2_OLAP_VALIDATE 27-1

Summary of CWM2_OLAP_VALIDATE Subprograms

Summary of CWM2_OLAP_VALIDATE Subprograms

Table 27-1 CWM2_OLAP_VALIDATE

Subprogram Description

VALI| DATE_DI MENSI ON Procedure Validates a dimension.
on page 27-2

VALI DATE_CUBE Pr ocedure on Validates a cube.
page 27-2

VALIDATE_DIMENSION Procedure

This procedure validates an OLAP Catalog dimension.

Syntax
VALI DATE_DI MENSI ON (
di mensi on_owner IN VARCHAR?,
di nensi on_nane IN VARHAR?);
Parameters
Table 27—2 VALIDATE_DIMENSION Procedure Parameters
Parameter Description
di nensi on_owner Owner of the dimension.
di nensi on_nane Name of the dimension.
Exceptions

Table 27-3 VALIDATE_DIMENSION Procedure Exceptions

Exception Description

no_access_privil eges User does not have the necessary privileges. User must
be the dimension owner and have the OLAP_DBA role.

di mensi on_not _f ound Dimension not found.

VALIDATE_CUBE Procedure

This procedure validates a cube.

27-2 Oracle9i OLAP User’s Guide

Summary of CWM2_OLAP_VALIDATE Subprograms

Syntax

Parameters

Exceptions

The validity status of a cube is displayed in the view ALL_COLAP2_CUBES, described
on page 14-5.

VALI DATE_CUBE (
cube_owner IN VARCHAR2,
cube_nane IN VARHAR?) ;

Table 27-4 VALIDATE_CUBE Procedure Parameters

Parameter Description
cube_owner Owner of the cube.
cube_nane Name of the cube.

Table 27-5 VALIDATE_CUBE Procedure Exceptions

Exception Description

no_access_privil eges User does not have the necessary privileges. User must
be the cube owner and have the OLAP_DBA role.

cube_not _found Cube not found.

CWM2_OLAP_VALIDATE 27-3

VALIDATE_CUBE Procedure

27-4 Oracle9i OLAP User’s Guide

28

CWM_CLASSIFY

The CWM_CLASSI FY package implements the OLAP metadata classification system,
used to manage measure folders (catalogs) and classify various OLAP metadata
entities. It provides procedures for creating measure folders and populating them
with measures.

Note: The term catalog, when used in the context of the
classification system, refers to a measure folder. It should not be
confused with the term OLAP Catalog, which refers to the
collection of tables that implement the OLAP metadata model.

See Also: Chapter 13, "Using the OLAP Catalog Metadata APIs".

This chapter discusses the following topics:
= Understanding the OLAP Classification System
« Summary of CWM_CLASSIFY Subprograms

= Example: Creating a Measure Folder

CWM_CLASSIFY 28-1

Understanding the OLAP Classification System

Understanding the OLAP Classification System

The CWM_CLASSI FY package, implementing the OLAP classification system, is
used primarily to manipulate OLAP measure folders.

The CWM_CLASSI FY package is part of CWM the metadata repository that underlies
the OLAP Management feature of Oracle Enterprise Manager. However, the
classification system is also used by CWWMR, the new metadata repository that is
available via the PL/SQL packages whose names start with CWWR_OLAP.

Note: Although the CWM CLASSI FY package manages measure
folders for both metadata management systems, the measures
stored within measure folders are specific to either CWMand CWWVR.
Measures created by Enterprise Manager cannot be accessed by
CWWR procedures, and measures created by CWMR procedures are
not visible within Enterprise Manager.

28-2 Oracle9i OLAP User’s Guide

Summary of CWM_CLASSIFY Subprograms

Summary of CWM_CLASSIFY Subprograms

Table 28-1

CWM_CLASSIFY Subprograms

Subprogram

Description

ADD_CATALOG ENTITY
Procedure on page 28-4

ADD_DESCRI PTOR_ENTI TY_
TYPE Procedure on
page 28-5

ADD_ENTI TY_DESCRI PTOR_USE
Procedure on page 28-6

CREATE_CATALQOG Functi on
on page 28-7

CREATE_DESCRI PTOR
Functi on on page 28-8

CREATE_DESCRI PTOR_TYPE
Procedure on page 28-9

DROP_CATALQOG Pr ocedure on
page 28-10

DROP_DESCRI PTCOR Pr ocedur e
on page 28-10

DROP_DESCRI PTOR_TYPE
Procedure on page 28-11

LOCK_CATALQOG Procedure on
page 28-12

REMOVE_CATALOG_ENTI TY
Procedure on page 28-12

REMOVE_DESCRI PTOR_ENTI TY_
TYPE Procedure on
page 28-13

REMOVE_ENTI TY_DESCRI PTOR
USE Pr ocedur eExcepti ons
on page 28-14

SET_CATALOG_DESCRI PTI ON
Procedure on page 28-16

SET_CATALOG_PARENT
Procedure on page 28-16

Adds a measure to a measure folder (catalog).

Adds a descriptor type to an entity type.

Attaches a descriptor to an entity.

Creates a measure folder (catalog).

Creates a descriptor.

Creates a descriptor type.

Drops a measure folder (catalog).

Drops a descriptor.

Drops a descriptor type.

Locks a measure folder’s metadata for update.
Removes a measure from a measure folder (catalog).

Removes a descriptor type from an entity type.

Removes a descriptor from an entity.

Sets the description for a measure folder (catalog).

Sets the parent folder for a measure folder (catalog).

CWM_CLASSIFY 28-3

ADD_CATALOG_ENTITY Procedure

ADD CATALOG_ENTITY Procedure

This procedure adds a measure or a cube to a measure folder.

Syntax
ADD_CATALOG ENTI TY (
catalog_id IN NUMBER,
entity_owner IN VARCHARZ,
entity name IN VARCHARZ,
child_ entity _name IN VARCHAR?);
Parameters
Table 28-2 ADD_CATALOG_ENTITY Procedure Parameters
Parameter Description
catalog id Name of the measure folder.
entity_owner Owner of the cube to be added to the measure folder.
entity_nane Name of the cube to be added to the measure folder.
child_entity_ Name of a measure. If this parameter is specified, the procedure adds
name this individual measure to the measure folder, instead of adding all
of the cube’s measures. If this parameter is NULL, the procedure adds
all of the cube’s measures. The default is NULL.
Exceptions

Table 28-3 ADD_CATALOG_ENTITY Procedure Exceptions

Exception

Description

el ement _al ready_
exists

el ement _not _f ound

cat al og_not _found

This cube is already added to this measure folder.

Cube or measure not found.

Measure folder not found.

28-4 Oracle9i OLAP User’s Guide

Summary of CWM_CLASSIFY Subprograms

ADD_DESCRIPTOR_ENTITY_TYPE Procedure

Syntax

Parameters

This procedure adds a descriptor type to a metadata entity type.
This procedure is only available to DBAs.

The following pairs of entity types and descriptor types are predefined in the OLAP
Catalog.

Entity Type Descriptor Type

Dimension Dimension Type

Dimension Dimension Primary Display Sort Order
Dimension Dimension Secondary Display Sort Order
Dimension Attribute Dimension Attribute Descriptor
Dimension Attribute Time Dimension Attribute Type

Level Attribute Dimension Attribute Descriptor

Level Attribute Time Dimension Attribute Type

Level Total Level

Level Time Dimension Level Type

Parameter Parameter Source Type

ADD _DESCRI PTCR_ENTI TY_TYPE (
descriptor_type IN VARCHAR?,
entity type IN VARCHAR?);

Table 28-4 ADD_DESCRIPTOR_ENTITY_TYPE Procedure Parameters

Parameter Description

descriptor_type Name of the descriptor type. Examples might be
di nension type,orattribute type.

entity_type One of the following types of entities: DI MENSI ON,
CUBE, MEASURE, LEVEL, ATTRI BUTE,
H ERARCHY, PARAMETER

CWM_CLASSIFY 28-5

ADD_ENTITY_DESCRIPTOR_USE Procedure

ADD_ENTITY_DESCRIPTOR_USE Procedure

This procedure assigns a descriptor to an OLAP metadata entity. An entity may
have multiple descriptors.

This procedure is only available to DBAs.

Syntax
ADD_ENTI TY_DESCRI PTOR_USE (
descriptor_id IN NUMBER,
entity_type IN VARCHARZ,
entity_owner IN VARCHARZ,
entity name IN VARCHARZ,
child entity _name IN VARCHARZ,
secondary_child_entity_nane IN VARCHAR?);
Parameters

Table 28-5 ADD_ENTITY_DESCRIPTOR_USE Procedure Parameters

Parameter

Description

descriptor_id

entity_type

entity_owner

entity_nane

child entity_
nane

secondary_
child_entity_
name

Identifier of the descriptor.

One of the following types of entities: DI MENSI ON, CUBE,
MEASURE, LEVEL, ATTRI BUTE,
H ERARCHY, PARAMETER

Owner of the entity.

Name of the parent entity. If there is no child entity, this is the name
of the entity to which the descriptor should be applied.

If the entity is a child of ent i t y_namne, name of the child entity. If
the entity is not a child of another entity, this parameter is NULL.

When this parameter is specified and there is no secondary child
entity, this is the name of the entity to which the descriptor should be
applied.

Levels, hierarchies, and dimension attributes are children of
dimensions. Measures are children of cubes.

Used for specifying level attributes, which are children of levels. If
the entity is not a level attribute, this parameter is NULL.

28-6 Oracle9i OLAP User’s Guide

Summary of CWM_CLASSIFY Subprograms

Exceptions

Table 28-6 ADD_ENTITY_DESCRIPTOR_USE Procedure Exceptions

Exception Description

entity_not_found Entity not found.

descri ptor _undefined Descriptor value not found in ALL$OLAP_DESCRI PTORS
lookup view.

CREATE_CATALOG Function

Syntax

Parameters

Exceptions

This function creates a measure folder and returns a unique identifier (NUMBER) for
the measure folder.

This identifier may be used to create subfolders of this measure folder.

CREATE_CATALOG (

catal og_nane IN VARCHARZ,
catal og_description IN NUMBER,
parent _catal og_id IN NUMBER);

Table 287 CREATE_CATALOG Function Parameters

Parameter Description

cat al og_nane Name of the measure folder.

cat al og_description Description of the measure folder.

parent _catal og_id Identifier of the parent measure folder. By default, this

parameter is NULL, meaning that the new measure folder
is at the root level in the hierarchy.

Table 28-8 CREATE_CATALOG Function Exceptions

Exception Description

parent _catal og_not_found Parent measure folder not found.

CWM_CLASSIFY 28-7

CREATE_DESCRIPTOR Function

Table 28-8 (Cont.) CREATE_CATALOG Function Exceptions

Exception Description
catal og_al ready_exi sts A measure folder with this name already exists.
i nval i d_name Measure folder name may not be empty or null.

CREATE_DESCRIPTOR Function

This function creates a descriptor and returns a unique identifier (NUMBER) for the
new descriptor.

For each descriptor type, multiple descriptors may be defined. These descriptors
are used as a domain to descriptor usages.

This procedure is only available to DBAs.

Syntax
CREATE_DESCRI PTOR (
descriptor_type IN VARCHARZ,
descri ptor_val ue IN VARCHARZ,
description IN VARCHAR?);
Parameters

Table 289 CREATE_DESCRIPTOR Function Parameters

Parameter Description

descriptor_type Name of the descriptor type. Examples might be di mensi on t ype,
orattribute type.

descri ptor_ The value for the descriptor. For example, | ong descri pti on and
val ue short description are descriptors of type attri bute type.
descri ption Description of the descriptor.

28-8 Oracle9i OLAP User’s Guide

Summary of CWM_CLASSIFY Subprograms

Exceptions

Table 28-10 CREATE_DESCRIPTOR Function Exceptions

Exception Description

descri ptor_type_not _found Descriptor type must be created first using the
CREATE_DESCRI PTOR_TYPE procedure.

descriptor_already_exists This descriptor value already exists for this
descriptor type.

no- access-privil eges Must have OLAP_DBA role.

CREATE_DESCRIPTOR_TYPE Procedure

Syntax

Parameters

Exceptions

This procedure creates a descriptor type.

A descriptor type serves as a domain for descriptors, which describe OLAP
metadata entities. The descriptor type also specifies the metadata entities to which
its descriptors may apply.

This procedure is only available to DBAs.

CREATE_DESCRI PTOR_TYPE (
descriptor_type IN VARCHAR2) ;

Table 28-11 CREATE_DESCRIPTOR_TYPE Procedure Parameters

Parameter Description

descriptor_type Name of the descriptor type. Examples might be di mensi on type,
orattribute type.

Table 28-12 CREATE_DESCRIPTOR_TYPE Procedure Exceptions

Exception Description

descriptor_type_al ready_ A descriptor type with this name already exists.
exists

entity_type_not_al |l owed Entity type is not one of the supported types.

CWM_CLASSIFY 28-9

DROP_CATALOG Procedure

DROP_CATALOG Procedure

Syntax

Parameters

Exceptions

This procedure deletes a measure folder. By default, you must delete subfolders
before deleting a measure folder. However, if you set the cascade parameter, all
subfolders are deleted along with the measure folder.

DROP_CATALQG (
catalog_id IN NUMBER
cascade IN VARCHAR2) ;

Table 28-13 DROP_CATALOG Procedure Parameters

Parameter Description
catalog_id Identifier of the measure folder.
cascade Whether or not the subfolders should be deleted with the measure

folder. Values may be Y or N. Y means that subfolders will be deleted. N
means that subfolders will not be deleted, and if there are subfolders the
measure folder will not be deleted. The default is N.

Table 28-14 DROP_CATALOG Procedure Exceptions

Exception Description

cat al og_has_sub_catal ogs You must drop the subfolders before deleting the
measure folder.

cat al og_not _found Measure folder not found.

DROP_DESCRIPTOR Procedure

This procedure drops a descriptor.

28-10 Oracle9i OLAP User’s Guide

Summary of CWM_CLASSIFY Subprograms

Syntax

Parameters

Exceptions

DROP_DESCRI PTCR (
descriptor_id IN NUMBER);

Table 28-15 DROP_DESCRIPTOR Procedure Parameters

Parameter Description

descriptor_id Descriptor identifier

Table 28-16 DROP_DESCRIPTOR Procedure Exceptions

Exception Description
descri ptor_not _found Descriptor not found.
no_access_privil eges Must have the OLAP_DBA role.

DROP_DESCRIPTOR_TYPE Procedure

Syntax

Parameters

This procedure drops a descriptor type.

A descriptor type serves as a domain for descriptors, which describe OLAP

metadata entities. The descriptor type also specifies the metadata entities to which

its descriptors may apply.
This procedure is granted only to DBA.

DROP_DESCRI PTCR_TYPE (
descriptor_type IN VARCHAR2) ;

Table 28-17 DROP_DESCRIPTOR_TYPE Procedure Parameters

Parameter Description

descriptor_type Name of the descriptor type.

CWM_CLASSIFY

28-11

LOCK_CATALOG Procedure

Exceptions

Table 28-18 DROP_DESCRIPTOR_TYPE Procedure Exceptions

Exception Description

descri ptor_type_not _found Descriptor type not found.

LOCK_CATALOG Procedure

This procedure locks the measure folder metadata for update. A database lock is
acquired on the row for the measure folder in the CWMmodel table.

Syntax
LOCK_CATALOG (
catalog_id IN NUMBER
wai t _for_lock IN BOOLEAN);
Parameters
Table 28-19 LOCK_CATALOG Procedure Parameters
Parameter Description
catalog_id Identifier of the measure folder.
wai t _for_|ock When t r ue, wait for lock to released if it has already been
acquired by another user. The defaultis f al se.
Exceptions

Table 28-20 LOCK_CATALOG Procedure Exceptions

Exception Description
cat al og_not _found Measure folder not found.
failed _to_gain_|lock Failed to acquire lock.

no_access_privil eges User does not have privileges to edit the measure folder.
User must be the owner or OLAP_DBA.

REMOVE_CATALOG_ENTITY Procedure

This procedure removes a cube or a measure from a measure folder.

28-12 Oracle9i OLAP User’s Guide

Summary of CWM_CLASSIFY Subprograms

Syntax
REMOVE_CATALOG ENTI TY (
catalog_ id IN NUMBER,
entity_owner IN VARCHARZ,
entity_nane IN VARCHARZ,
child_entity_name IN VARCHAR2) ;
Parameters
Table 28-21 REMOVE_CATALOG_ENTITY Procedure Parameters
Parameter Description
catalog id Identifier of the measure folder.
entity_owner Owner of the cube to be removed from the measure folder.
entity_nane Name of the cube to be removed from the measure folder.
child_entity_ Name of a measure. If this parameter is specified, the procedure
name removes this individual measure from the measure folder, instead of
removing all of the cube’s measures. If this parameter is NULL, the
procedure removes all of the cube’s measures. The default is NULL.
Exceptions

Table 28-22 REMOVE_CATALOG_ENTITY Procedure Exceptions

Exception Description
el ement _not _f ound Entity not found.
cat al og_not _found Measure folder not found.

REMOVE_DESCRIPTOR_ENTITY_TYPE Procedure

This procedure removes a descriptor type from an entity type.

CWM_CLASSIFY

28-13

REMOVE_ENTITY_DESCRIPTOR_USE Procedure

Syntax

Parameters

Exceptions

REMOVE_DESCRI PTCR_ENTI TY_TYPE (
descriptor_type IN VARCHARZ,
entity type IN VARCHAR?2);

Table 28-23 REMOVE_DESCRIPTOR_ENTITY_TYPE Procedure Parameters

Parameter Description

descriptor_type Name of the descriptor type. Examples might be
di nension type,orattribute type.

entity_type One of the following types of entities: DI MENSI ON,
CUBE, MEASURE, LEVEL, ATTRI BUTE,
HI ERARCHY, PARAMETER

Table 28-24 REMOVE_DESCRIPTOR_ENTITY_TYPE Procedure Exceptions

Exception Description

entity_not_found Entity not found.

REMOVE_ENTITY_DESCRIPTOR_USE Procedure

This procedure removes a descriptor from an OLAP metadata entity.

28-14 Oracle9i OLAP User’s Guide

Summary of CWM_CLASSIFY Subprograms

Syntax

Parameters

Exceptions

REMOVE_ENTI TY_DESCRI PTOR_USE (

descriptor_id IN NUMBER,

entity type IN VARCHARZ,
entity_owner IN VARCHARZ,
entity_nane IN VARCHARZ,
child_entity_name IN VARCHARZ,

secondary_child_entity_nane IN VARCHAR?);

Table 28-25 REMOVE_ENTITY_DESCRIPTOR_USE Procedure Parameters

Parameter

Description

descriptor_id

entity_type

entity_owner

entity_nane

child entity_
nane

secondary_
child entity_
nane

Identifier of the descriptor.

One of the following types of entities: DI MENSI ON, CUBE,
MEASURE, LEVEL, ATTRI BUTE,
HI ERARCHY, PARAMETER

Owner of the entity.

Name of the parent entity. If there is no child entity, this is the name
of the entity from which the descriptor should be removed.

If the entity is a child of ent i t y_namne, name of the child entity. If
the entity is not a child of another entity, this parameter is NULL.

When this parameter is specified and there is no secondary child
entity, this is the name of the entity from which the descriptor should
be removed.

Levels, hierarchies, and dimension attributes are children of
dimensions. Measures are children of cubes.

Used for specifying level attributes, which are children of levels. If
the entity is not a level attribute, this parameter is NULL.

Table 28-26 REMOVE_ENTITY_DESCRIPTOR_USE Procedure Exceptions

Exception

Description

entity_not_found

Entity not found.

CWM_CLASSIFY 28-15

SET_CATALOG_DESCRIPTION Procedure

SET CATALOG_DESCRIPTION Procedure

Syntax

Parameters

Exceptions

This procedure sets the description of a measure folder.

SET_CATALOG DESCRI PTI ON (
catalog_id IN NUMBER,
cat al og_description IN VARCHAR?);

Table 28-27 SET_CATALOG_DESCRIPTION Procedure Parameters

Parameter Description
catalog_id Identifier of the measure folder.
cat al og_description Description of the measure folder.

Table 28-28 SET_CATALOG_DESCRIPTION Procedure Exceptions

Exception Description

cat al og_not _f ound Measure folder not found.

SET_CATALOG_PARENT Procedure

Syntax

Parameters

This procedure changes the parent folder of an existing measure folder.

SET_CATALOG_PARENT (
catalog_id IN NUMBER,
parent _catal og_id IN NUMBER);

Table 28-29 SET_CATALOG_PARENT Procedure Parameters

Parameter Description

catalog_id Identifier of the measure folder.

28-16 Oracle9i OLAP User’'s Guide

Summary of CWM_CLASSIFY Subprograms

Table 28-29 (Cont.) SET_CATALOG_PARENT Procedure Parameters

Parameter Description

parent _catal og_id Identifier of the parent measure folder.

Exceptions

Table 28-30 SET_CATALOG_PARENT Procedure Exceptions

Exception Description

parent _catal og_not_found Parent measure folder not found.

cat al og_not _found Measure folder not found.

circul ar _dependency Cannot add the measure folder at this position in the
hierarchy. The parent is already a child of the measure
folder.

CWM_CLASSIFY 28-17

Example: Creating a Measure Folder

Example: Creating a Measure Folder

The following statements create a measure folder called PHARMACEUTI CALS and
add the measure SALES AMOUNT from SALES CUBE to it. The measure folder is at
the root level.

execute fol der_ID = cwmclassify. create catal og

(" PHARVACEUTI CALS', ' Pharnaceutical Sales and Planning');
execute cwmclassify.add_catal og_entity

("folder_ID, "JSMTH, 'SALES CUBE', 'SALES AMOUNT');

28-18 Oracle9i OLAP User’s Guide

Part V

OLAP API Materialized View Reference

Part V explains how to create materialized views for queries for aggregate data
from the OLAP API.

This part contains the following chapters:

= Chapter 29, "Creating Dimension Materialized Views"

= Chapter 30, "Creating Fact Materialized Views With DBMS_ODM"

= Chapter 31, "Creating Fact Materialized Views With OLAP Summary Advisor"

29

Creating Dimension Materialized Views

This chapter explains how to create dimension materialized views for the OLAP
APIL.

See Also: Chapter 10, "Creating Materialized Views for the
OLAP APT".

This chapter contains the following topics:

= Creating Materialized Views for Dimensions

= Statistics and Bitmap Indexes

= Sample Script for the TIMES_DIM Dimension

= Table Structure of Sample TIMES_DIM Dimension Materialized View

Creating Dimension Materialized Views 29-1

Creating Materialized Views for Dimensions

Creating Materialized Views for Dimensions

You can use OLAP Summary Advisor or the DBM5S_CDMPL/SQL package to create
dimension materialized views. When you use OLAP Summary Advisor, the
dimension materialized views are automatically created along with the fact
materialized views for a CWMcube. When you use the DBMS_ODMpackage, you must
call the CREATEDI MW_GS procedure to create dimension materialized views.

The syntax of the CREATE MATERI ALI ZED VI EWstatement is the same whether
generated by OLAP Summary Advisor or the DBM5_ODMpackage.

See Also:
« "Dimension Materialized Views" on page 10-4.

= "Using the DBMS_ODM Package" on page 30-2.
= "Using the OLAP Summary Advisor Wizard" on page 31-2.

Statistics and Bitmap Indexes

The scripts for creating dimension materialized views, whether generated by OLAP
Summary Advisor or DBMS_CDM include syntax for gathering statistics and creating
bitmap indexes.

Statistics

Statistics are required by the optimizer in order to maximize query performance at
runtime.

The following SQL statements analyze a materialized view and generate the needed
information.

ANALYZE TABLE mv_nanme COWVPUTE STATI STI CS;

EXECUTE dbns_stats. gather _table_stats (mv_owner, nv_name, degree=>
dbnms_stats. defaul t _degree, method_opt=>"for all colums size skewonly’') ;

ALTER TABLE mv_nane M NIM ZE RECORDS PER BLOCK ;

For more information about the ANALYZE TABLE statement, refer to the Oracle9i

SQL Reference. For more information about the DBMS_STATS package, refer to the
Oracle9i Supplied PL/SQL Packages and Types Reference.

29-2 Oracle9i OLAP User’s Guide

Statistics and Bitmap Indexes

Bitmap Indexes

Bitmap indexes optimize the performance of materialized views at runtime.
Dimension materialized views for the OLAP API include bitmap indexes for all
columns that contain dimension values.

The following SQL statements create bitmap indexes.

CREATE BI TMAP | NDEX i ndex_name ON nv_nane (mv_col name)
TABLESPACE t bl space_nane

PCTFREE 0

COWMPUTE STATI STI CS

LOCAL

NOLOGG NG

The CREATE Statement for a Dimension Materialized View

The following example shows the basic structure of the SQL statements generated
by OLAP Summary Advisor or DBMS_ODMto create a dimension materialized view
for the OLAP APL

The SELECT statement contains a COUNT(*) function, a GROUPI NG_| D function,
MAX aggregate functions, and a ROLLUP function. The following example shows the
basic syntax.

CREATE MATER ALl ZED M BNV nv_nane
PARTI TI ON BY RANGE (gi d)
(partition values less than(1l) ,
partition val ues | ess than(3) ,

partition val ues | ess than(MAXVALLE))
TABLESPACE t bl space_nane
BU LD | MED ATE
USI NG NO | NDEX
REFRESH FARCE
ENABLE QUERY REWR TE
AS
SH ECT
COUNT(*) COUNT_STAR,
CGROUPING_| D(| evel _col's) gid,
MAX(attribute_col 1)

MAX(attribute_col n)
| evel _cols

Creating Dimension Materialized Views 29-3

Sample Script for the TIMES_DIM Dimension

FROM

di mensi on_t abl e
GROP BY level 1, RALUP(level 2, ..., leveln)
where:

mu_name is the name of the materialized view. The name is derived from the names
of the dimension table and the hierarchy.

level_cols are the names of columns in the dimension table that contain data for the
levels of the hierarchy, beginning with the most aggregate (level1) and ending with
the least aggregate (leveln).

attribute_col is the name of a column defined as an attribute. All columns defined as
attributes should be listed in a MAX function.

dimension_table is the name of the dimension table whose columns are being
aggregated to create the materialized view.

levell is the highest level of aggregation. Note that levell is excluded from the
ROLLUP list.

leveln is the lowest level of aggregation or “leaf node”, which is also the key column.

Sample Script for the TIMES_DIM Dimension

The following sample script creates materialized views for the TI MES_DI M
dimension in the SHschema. This script could result from running OLAP Summary
Adpvisor or from invoking the DBM5_ODM CREATEDI MW_GS procedure.

The script creates two materialized views: one for the CAL_ROLLUP hierarchy, and
one for the FI S_ROLLUP hierarchy

CREATE materialized view TIMES _CAL_R OLAP
partition by range (gid) (
partition values |ess than(1),
partition values |ess than(3),
partition values |ess than(7),
partition values |ess than(MAXVALUE))
TABLESPACE SH DATABU LD | MVEDI ATE
USI NG NO | NDEX
REFRESH FORCE
ENABLE QUERY REWRI TE
AS
SELECT
COUNT(*) COUNT_STAR
GROUPING_I D(Tl MES. CALENDAR YEAR, TI MES. CALENDAR QUARTER_DESC,

29-4 Oracle9i OLAP User’s Guide

Sample Script for the TIMES_DIM Dimension

TI MES. CALENDAR MONTH DESC, TIMES. TIME_ID) gid,
max(T VES. CALENDAR_YEAR) CALENDAR YEAR AR
max(TI VES. END_OF CAL_YEAR) END_OF CAL_YEAR AR,
max(TI VES. DAYS_| N_CAL_YEAR) DAYS I N CAL_YEAR AR
max(TI MES. CALENDAR_QUARTER DESC) CALENDAR QUARTER DESC AR
max(TI MES. END_OF CAL_QUARTER) END_OF CAL_QUARTER AR
max(TI MES. DAYS_| N CAL_QUARTER) DAYS_I N CAL_QUARTER AR
max(T MES. CALENDAR_QUARTER NUVBER) CALENDAR QUARTER NUMBER AR
max(TI MES. CALENDAR_MONTH DESC) CALENDAR MONTH DESC AR
max(TI VES. END_OF_CAL_MONTH) END_OF_CAL_MONTH AR
max(T VES. DAYS_| N_CAL_MONTH) DAYS_| N CAL_MONTH AR,
max(Tl MES. CALENDAR_MONTH NAME) CALENDAR MONTH NAME_AR
max(Tl MES. CALENDAR_ MONTH NUVBER) CALENDAR MONTH NUMBER AR
max(TI MES. DAY_NUVBER | N WEEK) DAY NUMBER | N VEEK_AR
max(T MES. CALENDAR VEEK_NUVBER) CALENDAR VEEK_NUMBER AR,
max(TI VES. DAY_NUVBER | N_MONTH) DAY _NUVBER | N MONTH_AR
max(TI VES. DAY_NAVE) DAY NAME AR,
T MES. CALENDAR YEAR CALENDAR YEAR,
T MES. CALENDAR QUARTER DESC CALENDAR QUARTER DESC,
T MES. CALENDAR MONTH_DESC CALENDAR MONTH_DESC,
TIMES. TIME_ID TIME_I D
FROM
SH. TIMES TIMES
GROUP BY
T MES. CALENDAR YEAR |
ROLLUP(TI MES. CALENDAR QUARTER DESC, TI MES. CALENDAR MONTH_DESC, TI MES. TI ME_I D) :

execute dbnms_stats.gather _table stats ('SH, 'TIMES CAL_R OLAP', degree=>
dbns_st at s. def aul t _degree, met hod_opt=>'for all colums size skewonly’) ;
ALTER TABLE TI MES_CAL_R OLAP M NIM ZE RECCRDS_PER BLOCK ;

CREATE BI TMAP | NDEX W/_CALENDAR QUARTER DESCCA Bl 2 ON TI MES CAL_R CLAP
(CALENDAR_QUARTER DESC)

TABLESPACE SH | DX

PCTFREE 0

COVPUTE STATI STI CS

LOCAL

NOLOGG NG

CREATE BI TMAP | NDEX M/_CALENDAR MONTH DESCCA Bl 3 ON TI MES_CAL_R CLAP
(CALENDAR_MONTH_DESC)

TABLESPACE SH_| DX

PCTFREE 0

Creating Dimension Materialized Views 29-5

Sample Script for the TIMES_DIM Dimension

COMPUTE STATI STI CS
LOCAL
NOLOGG NG

CREATE BI TMAP | NDEX M/_TI ME_I DCA Bl 4 ON TIMES_CAL_R OLAP
(TIME_I D)

TABLESPACE SH_| DX

PCTFREE 0

COMPUTE STATI STI CS

LOCAL

NOLOGG NG

CREATE BI TMAP | NDEX W_G D_CA Bl _4 ON TI MES_CAL_R OLAP
(gid)

TABLESPACE SH | DX

PCTFREE 0

COVPUTE STATI STI CS

LOCAL

NOLOGG NG,

CREATE BI TMAP | NDEX W/_TI MES_CAL_R OLAP PREL_FI ON TI MES_CAL_R OLAP
((CASE GID
WHEN(7) THEN NULL
WHEN(3) THEN TO CHAR(CALENDAR YEAR)
WHEN(1) THEN TO CHAR(CALENDAR QUARTER DESC)
ELSE TO CHAR(CALENDAR MONTH DESC) END))
TABLESPACE SH | DX
PCTFREE 0
COVPUTE STATI STI CS
LOCAL
NOLOGG NG

CREATE BI TMAP | NDEX W/_TI MES_CAL_R OLAP_ET FI ON TIMES CAL R CLAP
((CASE GD

WHEN(7) THEN TO CHAR(CALENDAR YEAR)
WHEN(3) THEN TO CHAR(CALENDAR QUARTER DESC)
WHEN(1) THEN TO CHAR(CALENDAR MONTH DESC)
ELSE TO CHAR(TIME_ID) END))

TABLESPACE SH | DX

PCTFREE 0

COVPUTE STATI STI CS

LOCAL

NOLOGA NG

29-6 Oracle9i OLAP User's Guide

Sample Script for the TIMES_DIM Dimension

execute dbms_stats.gather _table stats('SH, 'TIMES CAL_R OLAP',
degree=>dbns_stats. defaul t _degree, estinmate_percent=>
dbons_stats. auto_sanpl e_si ze, nethod_opt=>for all hidden col ums size 254') ;

create materialized view TIMES FIS R OLAP
partition by range (gid) (
partition values |ess than(1),
partition values |ess than(3),
partition values |ess than(7),
partition values |ess than(15),
partition values |ess than(MAXVALUE))
TABLESPACE SH_DATA
BUI LD | MVEDI ATE
USI NG NO | NDEX
REFRESH FORCE
ENABLE QUERY REWRI TE
AS
SELECT

COUNT(*) COUNT_STAR,

GROUPI NG I D{ TI MES. FI SCAL_YEAR,

TI MES. FI SCAL_QUARTER DESC,

TI MES. FI SCAL_MONTH_DESC,

TI MES. WEEK_ENDI NG_DAY,

TIMES. TIME_ID) gid,

max(Tl MES. FI SCAL_YEAR) FI SCAL_YEAR AR,
(TIMES. END_OF _FI'S YEAR) END_OF FIS_YEAR AR,
max(TI MES. DAYS_IN_FI' S YEAR) DAYS IN FI' S YEAR AR
max(Tl MES. FI SCAL_QUARTER DESC) FI SCAL_QUARTER DESC AR,
max(TI MES. END OF FI' S QUARTER) END OF FI'S QUARTER AR,
max(TI MES. DAYS_IN_FI' S QUARTER) DAYS I N FI' S QUARTER AR,
max(TI MES. FI SCAL_QUARTER NUVBER) FI SCAL_QUARTER NUMBER AR,
max(TI MES. FI SCAL_NMONTH_DESC) FI SCAL_NMONTH DESC AR,
max(TI MES. END OF FI'S MONTH) END OF FI'S MONTH AR
max(TI MES. DAYS_IN_FI'S MONTH) DAYS IN FI'S_ MONTH AR
max(TI MES. FI SCAL_MONTH_NAVE) FI SCAL_NONTH _NAME AR,
max(TI MES. FI SCAL_MONTH_NUMBER) FI SCAL_MONTH_NUMBER AR,
max(Tl MES. WEEK_ENDI NG_DAY) WEEK_ENDI NG DAY AR,
max(Tl MES. FI SCAL_WEEK_NUMBER) FI SCAL_WEEK NUMBER AR,
max(TI MES. DAY_NUMBER | N WEEK) DAY NUMBER | N WEEK AR,
max(TI MES. CALENDAR WEEK_NUVBER) CALENDAR WEEK NUMBER AR,
max(TI MES. DAY_NUMBER | N MONTH) DAY NUMBER | N MONTH AR,
max(Tl MES. DAY_NAME) DAY_NAMVE_AR
TI MES. FI SCAL_YEAR FI SCAL_YEAR,
TI MES. FI SCAL_QUARTER_DESC FI SCAL_QUARTER DESC,
TI MES. FI SCAL_MONTH_DESC FI SCAL_NMONTH_DESC,

Creating Dimension Materialized Views 29-7

Sample Script for the TIMES_DIM Dimension

T MES. VEEK_ENDI NG_DAY VEEK_ENDI NG_DAY,
TI MES. TIVE_I D TI ME_I D
FROM
SH TIMES TIMES
GROUP BY
TI MES. FI SCAL_YEAR , ROLLUP(TI MES. FI SCAL_QUARTER DESC ,
TI MES. FI SCAL_MONTH_DESC , TI MES. WEEK_ENDI NG DAY , TIMES. TIME_ID);

execute dbns_stats.gather _table stats('SH, 'TIMES FIS R OLAP',
degree=>dbns_st ats. def aul t _degr ee, net hod_opt =>
"for all colums size skewonly’) ;

ALTER TABLE TIMES_FI S R OLAP M NIM ZE RECCRDS_PER BLOCK ;

CREATE BI TMAP | NDEX MW/_FI SCAL_QUARTER DESCFI_BI 8 ON TIMES_FI'S R OLAP
(FI SCAL_QUARTER DESC)

TABLESPACE SH | DX

PCTFREE 0

COVPUTE STATI STI CS

LOCAL

NOLOGG NG

CREATE BI TMAP | NDEX M/_FI SCAL_MONTH DESCFI Bl 12 ON TIMES_FI' S R OLAP
(FI SCAL_MONTH_DESC)

TABLESPACE SH_| DX

PCTFREE 0

COMPUTE STATI STI CS

LOCAL

NOLOGG NG

CREATE BI TMAP | NDEX W/_VEEK_ENDI NG DAYFI Bl 16 ON TIMES FI'S R OLAP
(VEEK_ENDI NG_DAY)

TABLESPACE SH | DX

PCTFREE 0

COVPUTE STATI STI CS

LOCAL

NOLOGG NG

CREATE BI TMAP | NDEX W/_TI ME_I DFI _BI 20 ON TIMES FI'S R OLAP
(TIMVE_I D)

TABLESPACE SH | DX

PCTFREE 0

COVPUTE STATI STI CS

LOCAL

NOLOGG NG

29-8 Oracle9i OLAP User’s Guide

Sample Script for the TIMES_DIM Dimension

CREATE BI TMAP | NDEX W_G D_FI Bl _20 ON TIMES_FI S R OLAP
(gid)

TABLESPACE SH | DX

PCTFREE 0

COVPUTE STATI STI CS

LOCAL

NOLOGG NG

CREATE BI TMAP | NDEX M/_TI MES_FI'S R OLAP_PREL_FI ON TIMES FI' S R OLAP
((CASE G D
WHEN(15) THEN NULL
WHEN(7) THEN TO CHAR(FI SCAL_YEAR)
WHEN(3) THEN TO CHAR(FI SCAL_QUARTER DESC)
WHEN(1) THEN TO CHAR(FI SCAL_MONTH DESC)
ELSE TO CHAR(VEEK_ENDI NG DAY) END))
TABLESPACE SH_ | DX
PCTFREE 0
COVPUTE STATI STI CS
LOCAL
NOLOGG NG,

CREATE BI TMAP | NDEX M/_TI MES_FI'S R OLAP_ET FI ON TIMES FI'S R CLAP

((CASE G D
WHEN(15) THEN TO CHAR(FI SCAL_YEAR)
WHEN(7) THEN TO CHAR(FI SCAL_QUARTER DESC)
WHEN(3) THEN TO CHAR(FI SCAL_MONTH DESC)
WHEN(1) THEN TO CHAR(VEEK_ENDI NG DAY)
ELSE TO CHAR(TIME_ID) END))

TABLESPACE SH_| DX

PCTFREE 0

COVPUTE STATI STI CS

LOCAL

NOLOGG NG

execute dbns_stats.gather _table stats('SH, 'TIMES FIS R OLAP',

degree=>dbms_st ats. def aul t _degree, estimate_percent=>
dbns_stats. aut o_sanpl e_si ze, nethod_opt=>"for all hidden col ums size 254') ;

Creating Dimension Materialized Views 29-9

Table Structure of Sample TIMES_DIM Dimension Materialized View

Table Structure of Sample TIMES_DIM Dimension Materialized View

The following table identifies the columns of the materialized view for the Times
dimension CAL_ROLLUP hierarchy.

Column Name Datatype Description

COUNT_STAR NUMBER The total number of rows.

G D NUMBER The grouping IDs for the remaining level
columns. Created by the GROUPI NG _| D
function to identify whether a level has a
value that should be included in the
aggregation. A zero (0) indicates that the
cell contains a value that should be
included; a one (1) indicates that it is null
or should not be included in the
aggregation.

CALENDAR_YEAR_AR DATE Calendar year attribute.

END _OF CAL_YEAR AR DATE End date attribute for year level.

DAYS | N CAL_YEAR AR NUMBER Time span attribute for year level.

CALENDAR QUARTER _ VARCHAR2 | Description attribute for quarter level.

DESC_AR

END OF CAL_QUARTER AR | DATE End date attribute for quarter level.

DAYS | N CAL_ QUARTER _ NUMBER Time span attribute for quarter level.

AR

CALENDAR_QUARTER _ NUMBER Number of quarters.

NUMBER_AR

CALENDAR_MONTH_DESC VARCHAR2 | Description attribute for month level.

AR

END_OF_ CAL_MONTH_AR DATE End date attribute for month level.

DAYS_ | N_CAL_MONTH_AR | NUMBER Time span attribute for month level.

CALENDAR_MONTH_NAME_ VARCHAR2 | Name attribute for month level.

AR

CALENDAR_MONTH_ NUVBER Number of months.

NUMBER AR

DAY _NUMBER | N VEEK AR | NUMBER Number of days in a week.

29-10 Oracle9i OLAP User’'s Guide

Table Structure of Sample TIMES_DIM Dimension Materialized View

Column Name Datatype Description
CALENDAR_WEEK_NUMBER_ | NUMBER Number of weeks.
AR
DAY_NUMBER_| N_MONTH_ NUMBER Number of days in a month.
AR
DAY_NAME_AR VARCHAR2 | Name attribute for day level.
CALENDAR_YEAR NUMBER Year level of calendar hierarchy.
CALENDAR QUARTER _DESC | VARCHAR2 Quarter level of calendar hierarchy.
CALENDAR_MONTH_DESC VARCHAR2 | Month level of calendar hierarchy.
TIME_ID DATE The primary key in the dimension table.

The “leaf node” in which the lowest level
of data is stored.

Creating Dimension Materialized Views 29-11

Table Structure of Sample TIMES_DIM Dimension Materialized View

29-12 Oracle9i OLAP User’s Guide

30

Creating Fact Materialized Views With
DBMS ODM

This chapter explains how to use the DBM5_ODMpackage to create materialized
views with grouping sets for the OLAP APL

See Also: Chapter 10, "Creating Materialized Views for the
OLAP API".

This chapter contains the following topics:

« Using the DBMS_ODM Package

« Partitioning, Statistics, and Indexes

= Sample Script for the COST Cube

« Summary of DBMS_ODM Subprograms

Creating Fact Materialized Views With DBMS_ODM 30-1

Using the DBMS_ODM Package

Using the DBMS_ODM Package

The procedures in the OLAP Data Management package, DBMS_ODM generate
scripts that create materialized views in grouping set form for fact tables. Each
script generates a single MV containing all hierarchy combinations for a CWMR cube.

The procedures in DBMS_CDMgenerate scripts that create materialized views,
bitmap indexes, and partitions. You can run these scripts in their original form,
modify the scripts before executing them, or use them simply as models for writing
your own SQL scripts.

See Also:
« "Fact Materialized Views".

« "Choosing the Right Format for Materialized Views".

Procedure: Create and Run Scripts to Generate Grouping Set Materialized Views

Follow these steps to create a grouping set materialized view for a cube:

1.

Create and map a valid CVWWR cube as described in Chapter 17, "CWM2_OLAP_
CUBE".

Enable your database to write the scripts to a file by setting the UTL_FI LE_DI R
parameter to a valid directory, as described in "Initialization Parameters for
Oracle OLAP" on page 6-3.

Log into SQL*Plus using the identity of the metadata owner.
Delete any materialized views that currently exist for the cube.

Use the following three step procedure to create a script to generate a grouping
set materialized view for the cube:

a. Execute DBM5_ODM CREATEDI MLEVTUPLE to create the table
sys. ol apt abl evel s. This table lists all the dimensions of the cube and
all of the levels of each dimension.

By default, all the levels of all the dimensions are selected for inclusion in
the materialized view. You can edit the table to deselect any levels that you
do not want to include.

b. Execute DBMS_CODM CREATECUBELEVELTUPLE to create the table
sys. ol apt abl evel t upl es. This table lists all of the level combinations
that will be included in the materialized view. This table is derived from the
table created in the previous step.

30-2 Oracle9i OLAP User’s Guide

Partitioning, Statistics, and Indexes

By default, all the levels combinations are selected for inclusion in the
materialized view. You can edit the table to deselect any level combinations
that you do not want to include.

c. Execute DBMS_ODM CREATEFACTMWV/_GS to create the script.

For example, in the Sales History sample schema, you would create a script for
COST_CUBE and a script for SALES_CUBE.

5. Optionally, edit the script using any text editor.
6. Run the scripts in SQL*Plus, using commands such as the following;:

@ users/ oracl e/ OraHomel/ ol ap/ nvscript. sql ;

See Also: "Summary of DBMS_ODM Subprograms" on
page 30-11 for the syntax of the procedures in the DVMBS_CDM
package.

Partitioning, Statistics, and Indexes

Partitioning

Statistics

The scripts generated by DBMS_ODM CREATEFACTM/_GS include syntax for
partitioning, gathering statistics, and creating bitmap indexes.

Partitioning can have a significant impact upon query performance. You may want
to customize the partitioning of fact materialized views before running the scripts
generated by DBMS_ODM CREATEFACTMW_GS.

By default, partitioning is based on grouping IDs since most queries are based on
levels. A grouping ID uniquely identifies one level combination per partition (such
as CALENDAR_YEAR and PROD_TOTAL).

Statistics are required by the optimizer in order to maximize query performance at
runtime.

The following SQL statements analyze a materialized view and generate the needed
information.

ANALYZE TABLE mv_nanme COWVPUTE STATI STI CS;

EXECUTE dbns_stats. gather _table_stats (mv_owner, nv_nane, degree=>
dbons_stats. default _degree, method_opt=>for all colums size skewonly') ;

ALTER TABLE mv_nane M NIM ZE RECORDS PER BLOCK ;

Creating Fact Materialized Views With DBMS_ODM 30-3

Sample Script for the COST Cube

For more information about the ANALYZE TABLE statement, refer to theOracle9i SQL
Reference. For more information about the DBMS_STATS package, refer to the Oracle9i
Supplied PL/SQL Packages and Types Reference.

Bitmap Indexes

Bitmap indexes optimize the performance of materialized views at runtime. Fact
materialized views for the OLAP API include bitmap indexes for all columns that
contain dimension values.

The following SQL statements create bitmap indexes.

CREATE BI TMAP | NDEX i ndex_name ON nv_nane (nv_col name)
TABLESPACE t bl space_nane

PCTFREE 0

COMPUTE STATI STI CS

LOCAL

NOLOGGE NG

Sample Script for the COST Cube

The following sample script, generated by DBM5_CDM CREATEFACTMV_GS, creates
a materialized view in grouping set form for the COST_CUBE cube, which is
mapped to the COSTS fact table in the SH schema.

This script contains all level combinations for all hierarchies. To deselect levels and
level combinations, edit the tables generated by the CREATEDIMLEVTUPLE
Procedure and the CREATECUBELEVELTUPLE Procedure before invoking
CREATEFACTMV_GS Procedure.

create materialized view
COST_CUBE_2_OLAP

partition by range (gid) (
partition values |ess than(1),
partition values |ess than(62),
partition values |ess than(126),
partition values |ess than(254),
partition values |ess than(450),
partition values |ess than(454),
partition values |ess than(462),
partition values |ess than(478),
partition values |ess than(512),
partition values |ess than(574),
partition values |ess than(638),

30-4 Oracle9i OLAP User’s Guide

Sample Script for the COST Cube

partition
partition
partition
partition
partition
partition
partition
partition
partition
partition
partition
partition
partition
partition
partition
partition
partition
partition
partition
partition
partition
partition
pctfree 5

val ues | ess
val ues |ess
val ues |ess
val ues |ess
val ues | ess
val ues | ess
val ues | ess
val ues |ess
val ues |ess
val ues |ess
val ues |ess
val ues | ess
val ues | ess
val ues | ess
val ues |ess
val ues |ess
val ues |ess
val ues | ess
val ues | ess
val ues | ess
val ues |ess
val ues |ess
pctused 40

build imediate
using no index
refresh force

enabl e query rewite

AS
SELECT

t han(766
t han(962
t han(966

(766)
(962),
(966) ,
t han(974)

t han(990)

t han(1536) ,

t han(1598),

t han(1662),

t han(1790),

t han(1986),

t han(1990),

t han(1998),
than(2014),

t han(3584),

t han(3646)

t han(3710),

t han(3838),

t han(4034)

t han(4038)

t han(4046)

t han(4062)

t han(MAXVALUE))

GROUPI NG | D{ PRODUCTS. PROD_TOTAL, PRODUCTS. PROD_CATEGORY,
PRODUCTS. PROD_SUBCATEGORY, PRODUCTS. PROD | D,

TI MES. CALENDAR YEAR Tl MES. CALENDAR_QUARTER DESC,

TI MES. CALENDAR MONTH_DESC, TI MES. FI SCAL_YEAR,

TI MES. FI SCAL_QUARTER DESC, TI MES. FI SCAL_MONTH_DESC,

TI MES. WEEK_ENDI NG DAY, TIMES. TIME_I D) gid,

SUM COSTS. UNI T_COST) SUM CF_UNI T_COST,

SUM COSTS. UNI T_PRI CE) SUM OF_UNI T_PRI CE,

COUNT(*) COUNT_OF_STAR

PRODUCTS. PROD_TOTAL PRCD_TOTAL_77,

PRODUCTS. PROD_CATEGORY PROD_CATEGCRY_78,

PRODUCTS. PROD_SUBCATEGORY PROD_SUBCATEGORY 79,
PRODUCTS. PROD_| D PROD_I D 80,

TI MES. CALENDAR YEAR CALENDAR YEAR 169,

TI MES. CALENDAR_QUARTER DESC CALENDAR QUARTER DESC 170,
TI MES. CALENDAR MONTH_DESC CALENDAR MONTH_DESC 171,

Creating Fact Materialized Views With DBMS_ODM

30-5

Sample Script for the COST Cube

TI MES. FI SCAL_YEAR FI SCAL_YEAR 172,
TI MES. FI SCAL_QUARTER DESC FI SCAL_QUARTER DESC 173,
TI MES. FI SCAL_MONTH_DESC FI SCAL_MONTH_DESC 174,
TI MES. WEEK_ENDI NG DAY VEEEK_ENDI NG DAY 175,
TIMES. TIME_ID TIME_I D 176

FROM
SH. PRODUCTS PRODUCTS,
SH. TI MES TI MES,
SH. COSTS COSTS

WHERE
(TIMES. TIME_I D = COSTS. TI ME_I D) AND
(PRODUCTS. PROD_| D = COSTS. PROD | D)

GROUP BY GROUPING SETS

(' (PRODUCTS. PROD_TOTAL , PRODUCTS. PROD_CATEGORY
PRODUCTS. PROD_SUBCATEGORY , PRODUCTS. PROD_ID , Tl MES. CALENDAR YEAR |
TI MES. CALENDAR QUARTER DESC , Tl MES. CALENDAR MONTH_DESC |,
TI MES. FI SCAL_YEAR , TI MES. FI SCAL_QUARTER DESC ,
TI MES. FI SCAL_MONTH DESC , Tl MES. WEEK_ENDI NG DAY , TIMES. TIME_ID),

(PRODUCTS. PROD_TOTAL , PRODUCTS. PROD_CATEGCRY |

PRODUCTS, PROD_SUBCATEGORY , PRODUCTS. PROD_I D, TI MES. FI SCAL_YEAR ,
TI MES. FI SCAL_QUARTER DESC , Tl MES. FI SCAL_MONTH DESC ,

TI MES. WEEK_ENDI NG DAY),

(PRODUCTS. PROD_TOTAL , PRODUCTS. PROD_CATEGCRY |,
PRODUCTS, PROD_SUBCATEGORY , PRODUCTS. PROD_I D, TI MES. FI SCAL_YEAR ,
TI MES. FI SCAL_QUARTER DESC , TI MES. FI SCAL_MONTH DESC),

(PRODUCTS. PROD_TOTAL , PRODUCTS. PROD_CATEGCRY
PRCDUCTS. PROD_SUBCATEGORY , PRODUCTS. PRCD_I D, TI MES. CALENDAR_YEAR ,
TI MES. CALENDAR_QUARTER DESC , TI MES. CALENDAR MONTH_DESC),

(PRODUCTS. PROD_TOTAL , PRODUCTS. PROD_CATEGCRY |

PRODUCTS, PROD_SUBCATEGORY , PRODUCTS. PROD_I D, TI MES. FI SCAL_YEAR ,
TI MES. FI SCAL_QUARTER DESC),

(PRODUCTS. PROD_TOTAL , PRODUCTS. PROD_CATEGCRY |,

PRODUCTS. PROD_SUBCATEGORY , PRODUCTS. PROD_I D, TI MES. CALENDAR YEAR |
TI MES. CALENDAR QUARTER DESC),

(PRODUCTS. PROD_TOTAL , PRODUCTS. PROD_CATEGORY |,
PRODUCTS. PROD_SUBCATEGORY , PRODUCTS. PROD_I D, TI MES. FI SCAL_YEAR),

(PRODUCTS. PROD_TOTAL , PRODUCTS, PROD_CATEGCRY

30-6 Oracle9i OLAP User's Guide

Sample Script for the COST Cube

PRODUCTS. PROD_SUBCATEGORY , PRODUCTS. PROD_I D , Tl MES. CALENDAR YEAR),

(PRODUCTS. PROD_TOTAL , PRODUCTS, PROD_CATEGCRY

PRODUCTS. PROD_SUBCATEGORY , TI MES. CALENDAR YEAR |,

TI MES. CALENDAR QUARTER DESC , TI MES. CALENDAR MONTH_DESC |,

TI MES. FI SCAL_YEAR , TI MES. FI SCAL_QUARTER DESC ,

TI MES. FI SCAL_MONTH_DESC , TI MES. WEEK_ENDI NG DAY , TIMES. TIMEID),

(PRODUCTS. PROD_TOTAL , PRODUCTS. PROD_CATEGCRY
PRODUCTS. PROD_SUBCATEGORY , TI MES. FI SCAL_YEAR ,

TI MES. FI SCAL_QUARTER DESC , Tl MES. FI SCAL_MONTH DESC ,
TI MES. WEEK_ENDI NG DAY),

(PRODUCTS. PROD_TOTAL , PRODUCTS. PROD_CATEGCRY |,
PRODUCTS. PROD_SUBCATEGORY , TI MES. FI SCAL_YEAR ,
TI MES. FI SCAL_QUARTER DESC , Tl MES. FI SCAL_MONTH DESC),

(PRODUCTS. PROD_TOTAL , PRODUCTS. PROD_CATEGCRY ,
PRCDUCTS. PROD_SUBCATEGORY , Tl MES. CALENDAR_YEAR
TI MES. CALENDAR_QUARTER DESC , TI MES. CALENDAR MONTH_DESC),

(PRODUCTS. PROD_TOTAL , PRODUCTS. PROD_CATEGCRY
PRODUCTS. PRCD_SUBCATEGORY , TI MES. FI SCAL_YEAR ,
T| MES. FI SCAL_QUARTER DESC),

(PRODUCTS. PROD_TOTAL , PRODUCTS. PROD_CATEGCRY |,
PRODUCTS. PROD_SUBCATEGCRY , Tl MES. CALENDAR YEAR |
T MES. CALENDAR QUARTER DESC),

(PRODUCTS. PROD_TOTAL , PRODUCTS. PROD_CATEGCRY ,
PRODUCTS. PRCD_SUBCATEGORY , TI MES. FI SCAL_YEAR),

(PRODUCTS. PROD_TOTAL , PRODUCTS. PROD_CATEGCRY
PRODUCTS. PRCD_SUBCATEGORY , TI MES. CALENDAR YEAR),

(PRODUCTS. PROD_TOTAL , PRODUCTS. PROD_CATEGORY , Tl MES. CALENDAR YEAR ,
TI MES. CALENDAR QUARTER DESC , TI MES. CALENDAR_MONTH_DESC |

TI MES. FI SCAL_YEAR , TIMES. FI SCAL_QUARTER DESC ,

TI MES. FI SCAL_MONTH DESC , TI MES. \EEK_ENDI NG DAY, TIMES. TIMEID),

(PRODUCTS. PROD_TOTAL , PRODUCTS. PROD_CATEGORY , Tl MES. FI SCAL_YEAR |
T MES. FI SCAL_QUARTER DESC , TI MES. FI SCAL_MONTH_DESC ,
TI MES. WEEK_ENDI NG DAY),

(PRODUCTS. PROD_TOTAL , PRODUCTS. PROD_CATEGORY , Tl MES. FI SCAL_YEAR |

Creating Fact Materialized Views With DBMS_ODM 30-7

Sample Script for the COST Cube

T MES. FI SCAL_QUARTER DESC , TI MES. FI SCAL_MONTH DESC),

(PRODUCTS. PROD_TOTAL , PRODUCTS. PROD_CATEGORY , Tl MES. CALENDAR YEAR ,
TI MES. CALENDAR QUARTER DESC , TI MES. CALENDAR MONTH DESC),

(PRODUCTS. PROD_TOTAL , PRODUCTS. PROD_CATEGORY , Tl MES. FI SCAL_YEAR ,
TI MES. FI SCAL_QUARTER _DESC),

(PRODUCTS. PROD_TOTAL , PRODUCTS. PROD_CATEGORY , Tl MES. CALENDAR YEAR ,
T MES. CALENDAR QUARTER DESC),

(PRODUCTS. PROD_TOTAL , PRODUCTS. PROD_CATEGCRY , Tl MES. FI SCAL_YEAR),

(PRODUCTS. PROD_TOTAL , PRODUCTS. PROD_CATEGORY , Tl MES. CALENDAR YEAR),
(PRODUCTS. PROD_TOTAL , TI MES. CALENDAR YEAR |

TI MES. CALENDAR QUARTER DESC , TI MES. CALENDAR MONTH DESC |,

TI MES. FI SCAL_YEAR , TIMES. FI SCAL_QUARTER DESC ,

TI MES. FI SCAL_MONTH DESC , TI MES. \EEK_ENDI NG DAY , TINMES. TIME_ID),

(PRODUCTS. PROD_TOTAL , TI MES. FI SCAL_YEAR , TI MES. FI SCAL_QUARTER DESC ,
TI MES. FI SCAL_MONTH DESC , TI MES. \EEK_ENDI NG_DAY),

(PRODUCTS. PROD_TOTAL , TI MES. FI SCAL_YEAR , TI MES. FI SCAL_QUARTER DESC ,
TI MES. FI SCAL_MONTH DESC),

(PRODUCTS. PROD_TOTAL , TI MES. CALENDAR YEAR |
TI MES. CALENDAR QUARTER DESC , TI MES. CALENDAR MONTH DESC),

(PRODUCTS. PROD_TCTAL , TI MES. FI SCAL_YEAR ,
TI MES. FI SCAL_QUARTER DESC),

(PRODUCTS. PROD_TOTAL, TI MES. CALENDAR YEAR,
TI MES. CALENDAR QUARTER DESC)

(PRODUCTS. PROD_TOTAL , TI MES. FI SCAL_YEAR),
(PRODUCTS. PROD_TOTAL , TI MES. CALENDAR YEAR)) ;
execute dbnms_stats.gather _table stats(’'SH, 'COST_CUBE 2 OLAP', degree=>
dbns_stats. defaul t _degree, estinate_percent=>
dbns_st ats. aut o_sanpl e_si ze, nethod_opt =>

"for all colums size 1 for colums size 254 D , granularity=>" GOBAL') ;
ALTER TABLE COST_CUBE_2_COLAP M NIM ZE RECCRDS_PER BLOCK ;

30-8 Oracle9i OLAP User's Guide

Sample Script for the COST Cube

CREATE BI TMAP | NDEX BNVHI DX_COST_PROD TOTALTAL ON COST_CUBE 2 CLAP(PROD_TOTAL_77)
LOCAL

COVPUTE STATI STI CS

PARALLEL PCTFREE 0

NOLOGG NG,

CREATE Bl TMAP | NDEX BMHI DX_COST_PROD_CATEGORY ON COST CUBE 2 CLAP
(PROD_CATEGORY_78)

LOCAL

COVPUTE STATI STI CS

PARALLEL PCTFREE 0

NOLOGG NG

CREATE BI TMAP | NDEX BMHI DX_COST_PROD_SUBCACRY ON COST CUBE 2 CLAP
(PROD_SUBCATEGORY_79)

LOCAL

COVPUTE STATI STI CS

PARALLEL PCTFREE 0

NOLOGG NG

CREATE BI TMAP | NDEX BVHI DX_COST_PROD_I D | D ON COST_CUBE_2_OLAP
(PROD_| D_80)

LOCAL

COMPUTE STATI STI CS

PARALLEL PCTFREE 0

NOLOGGE NG

CREATE BI TMAP | NDEX BVHI DX_COST_CALENDAR YEAR ON COST_CUBE 2_CLAP
(CALENDAR YEAR 169)

LOCAL

COMPUTE STATI STI CS

PARALLEL PCTFREE 0

NOLOGG NG

CREATE BI TMAP | NDEX BVHI DX_COST_CALENDAR QESC ON COST_CUBE 2_CLAP
(CALENDAR QUARTER DESC 170)

LOCAL

COVPUTE STATI STI CS

PARALLEL PCTFREE 0

NOLOGG NG

CREATE BI TMAP | NDEX BMHI DX_COST_CALENDAR MESC ON COST CUBE 2 CLAP
(CALENDAR MONTH_DESC_171)

LOCAL

COVPUTE STATI STI CS

Creating Fact Materialized Views With DBMS_ODM 30-9

Sample Script for the COST Cube

PARALLEL PCTFREE 0
NOLOGGE NG

CREATE BI TMAP | NDEX BVHI DX_COST_FI SCAL_YEAEAR ON COST_CUBE 2_CLAP
(FI SCAL_YEAR 172)

LOCAL

COMPUTE STATI STI CS

PARALLEL PCTFREE 0

NOLOGG NG

CREATE BI TMAP | NDEX BVHI DX_COST_FI SCAL_QUAESC ON COST_CUBE 2_CLAP
(FI SCAL_QUARTER DESC_173)

LOCAL

COVPUTE STATI STI CS

PARALLEL PCTFREE 0

NOLOGG NG

CREATE Bl TMAP | NDEX BMHI DX_COST_FI SCAL_MONESC ON COST_CUBE_2_CLAP
(FI SCAL_MONTH_DESC_174)

LOCAL

COVPUTE STATI STI CS

PARALLEL PCTFREE 0

NOLOGE NG

CREATE BI TMAP | NDEX BMHI DX_COST_WEEK_ENDI NDAY ON COST CUBE_2_CLAP
(VEEK_ENDI NG_DAY_175)

LOCAL

COVPUTE STATI STI CS

PARALLEL PCTFREE 0

NOLOGG NG

CREATE BI TMAP | NDEX BNVHI DX_COST TIME_I D | D ON COST_CUBE_2_OLAP(TI ME_I D_176)
LOCAL

COVPUTE STATI STI CS

PARALLEL PCTFREE 0

NOLOGG NG

execute dbms_stats.gather _table stats(’'SH, 'COST_CUBE 2_OLAP', degree=>
dbns_stats. defaul t _degree, estimate_percent=>
dbns_stats. aut o_sanpl e_si ze, nethod_opt=>
"for all hidden colums size 254’ , granularity=> GLOBAL') ;

execute cwr2_ol ap_cube. set _nmv_sunmmary_code(’' SH, ' COST_CUBE', ' GROUPI NGSET') ;

30-10 Oracle9i OLAP User’'s Guide

Summary of DBMS_ODM Subprograms

Summary of DBMS_ODM Subprograms

Table 30-1 DBMS_ODM Subprograms

Subprogram Description

CREATEDI MLEVTUPLE Creates a table of levels to be included in the
Procedure on page 30-11 materialized view for a cube.
CREATECUBELEVELTUPLE Creates a table of level combinations to be included in
Procedure on page 30-12 the materialized view for a cube.

CREATEFACTMV_GS Procedur e Generates a script that creates a fact table materialized

on page 30-13 view.

CREATEDI MW_GS Procedure Generates a script that creates a dimension table
on page 30-14 materialized view.

CREATEDIMLEVTUPLE Procedure

This procedure creates the table Sys. ol apt abl evel s, which lists all the levels of all
of the dimensions of the cube. By default, all levels are selected for inclusion in the
materialized view. You can edit the table to deselect any levels that you do not want

Syntax

Parameters

to include.

CREATE_DI MLEVTUPLE (
cube_owner I N varchar 2,
cube_name I'N varchar?2);

Table 30—2 CREATEDIMLEVTUPLE Procedure Parameters

Parameter Description
cube_owner Owner of the cube.
cube_nane Name of the cube.

Creating Fact Materialized Views With DBMS_ODM

30-11

CREATECUBELEVELTUPLE Procedure

CREATECUBELEVELTUPLE Procedure

This procedure creates the table sys. ol apt abl evel t upl es, which lists all the level
combinations to be included in the materialized view for the cube.

The table sys. ol apt abl evel t upl es is created based on the table
sys. ol apt abl evel s, which was generated by the CREATEDIMLEVTUPLE

Procedure.

Important: If you do not want to include all level combinations in
the materialized view for the cube, you must edit the table

sys. ol apt abl evel s before executing the
CREATECUBELEVELTUPLE procedure.

Syntax
CREATECUBELEVELTUPLE (
cube_owner IN VARCHAR?,
cube_name IN VARCHAR?2);
Parameters

Table 30-3 CREATECUBELEVELTUPLE Procedure Parameters

Parameter Description
cube_owner Owner of the cube.
cube_nane Name of the cube.

30-12 Oracle9i OLAP User’'s Guide

Summary of DBMS_ODM Subprograms

CREATEFACTMV_GS Procedure

This procedure generates a script that creates a fact table materialized view.

The materialized view will include all level combinations specified in the
sys. ol apt abl evel t upl es table, which was created by the
CREATECUBELEVELTUPLE Procedure.

Syntax
CREATEFACTW_GS (

cube_owner IN VARCHAR?,

cube_name IN VARCHAR?,

outfile IN VARCHAR?,

outfile_path IN VARCHARZ,

partitioning IN BOCLEAN,

tabl espace_mv IN VARCHAR2 DEFAULT NULL,

tabl espace_i ndex IN VARCHAR2 DEFAULT NULL);
Parameters

Table 30-4 CREATEFACTMV_GS Procedure Parameters

Parameter Description

cube_owner Owner of the cube.

cube_nane Name of the cube.

output _file File name where the PL/SQL script will be written.

out put _path Directory path where out put _f i | e will be created.
partitioning TRUE turns on index partitioning; FALSE turns it off.
t abl espace_nv The name of the tablespace in which the materialized view

will be created. When this parameter is omitted, the
materialized view is created in the user’s default tablespace.

t abl espace_i ndex The name of the tablespace in which the index for the
materialized view will be created. When this parameter is
omitted, the index is created in the user’s default tablespace.

Creating Fact Materialized Views With DBMS_ODM 30-13

CREATEDIMMV_GS Procedure

CREATEDIMMV_GS Procedure

This procedure generates a script that creates a dimension table materialized view
for each hierarchy of a dimension.

Syntax
CREATEDI MW_GS (

di mensi on_owner IN VARCHARZ,

di mensi on_name IN VARCHARZ,

output _file IN VARCHARZ,

out put_path IN VARCHARZ,

tabl espace_nv IN VARCHAR2 DEFAULT NULL,

tabl espace_index IN VARCHAR2 DEFAULT NULL);
Parameters

Table 30-5 CREATEDIMMV_GS Procedure Parameters

Parameter Description

di nensi on_owner Owner of the dimension.

di nensi on_nane Name of the dimension.

output _file File name where the PL/SQL script will be written.

out put _path Directory path where out put _f i | e will be created.

t abl espace_nv The name of the tablespace in which the materialized view

will be created. When this parameter is omitted, the
materialized view is created in the user’s default tablespace.

t abl espace_i ndex The name of the tablespace in which the index for the
materialized view will be created. When this parameter is
omitted, the index is created in the user’s default tablespace.

30-14 Oracle9i OLAP User’s Guide

31

Creating Fact Materialized Views With OLAP
Summary Advisor

This chapter explains how to use OLAP Summary Advisor to create fact table
materialized views in concatenated rollup form for the OLAP APL

See Also: Chapter 10, "Creating Materialized Views for the
OLAP API".

This chapter contains the following topics:

« Using the OLAP Summary Advisor Wizard

« Partitioning, Statistics, and Indexes

« The MV CREATE Statement With Concatenated Rollup

= Sample Script for the COST Cube

Creating Fact Materialized Views With OLAP Summary Advisor 31-1

Using the OLAP Summary Advisor Wizard

Using the OLAP Summary Advisor Wizard

To create concatenated rollup MVs for CWM cubes, use OLAP Summary Advisor.

Oracle Enterprise Manager has two distinct Summary Advisors. They generate
very different types of materialized views. One Summary Advisor generates
materialized views for Oracle OLAP, and the other generates materialized views for
other types of applications.

The Summary Advisor that you need to use for OLAP is located within the OLAP
Management tool. It generates materialized views that query rewrite will use for
queries generated by the OLAP APIL

See Also:
« "Fact Materialized Views".

« "Choosing the Right Format for Materialized Views".

Procedure: Run the OLAP Summary Advisor

Follow these steps to run the OLAP Summary Advisor wizard:

1.

Start Oracle Enterprise Manager and access OLAP Management, as described in
Chapter 5, "Creating OLAP Catalog Metadata".

Expand the OLAP folder, then fully expand the Cubes folder.
Right-click a cube or its Materialized Views subfolder.

You see a popup menu.

Choose Summary Advisor from the menu.

You see the Summary Advisor Wizard Welcome page.
Choose Next.

The Summary Advisor analyzes the cube and makes recommendations for
creating materialized views for the fact table and dimension tables associated
with the selected cube. When it is done, you see the Recommendations page.

Choose Next.

The Summary Advisor generates the scripts to create the recommended
materialized views. When it is done, you see the Finish page.

31-2 Oracle9i OLAP User's Guide

Partitioning, Statistics, and Indexes

7. Examine the scripts. If you have already created the materialized views for
another cube that uses some of the same dimensions, delete the scripts that
recreate materialized views for those dimensions.

8. To modify the scripts, choose Save to file. Then choose Cancel to close the
Summary Advisor. You can edit the file, then execute it using SQL*Plus or Job
Manager.

or

Choose Finish to execute the original scripts immediately. You see the
Implement Recommendations page while the scripts are executing.

9. Run the OLAP Summary Advisor wizard on other cubes in your schema.

Partitioning, Statistics, and Indexes

Partitioning

Statistics

The scripts generated by OLAP Summary Advisor include syntax for partitioning,
gathering statistics and creating bitmap indexes.

Partitioning can have a significant impact upon query performance. You may want
to customize the partitioning of fact materialized views before running the scripts
generated by OLAP Summary Advisor.

By default, partitioning is based on grouping IDs since most queries are based on
levels. A grouping ID uniquely identifies one level combination per partition (such
as CALENDAR_YEAR and PROD_TOTAL).

Statistics are required by the optimizer in order to maximize query performance at
runtime.

The following SQL statements analyze a materialized view and generate the needed
information.

ANALYZE TABLE mv_nanme COWVPUTE STATI STI CS;

EXECUTE dbns_stats. gather _table_stats (mv_owner, nv_nane, degree=>
dbns_stats. defaul t _degree, method_opt=>"for all colums size skewonly’') ;

ALTER TABLE mv_nane M NIM ZE RECORDS PER BLOCK ;

Creating Fact Materialized Views With OLAP Summary Advisor 31-3

The MV CREATE Statement With Concatenated Rollup

For more information about the ANALYZE TABLE statement, refer to theOracle9i SQL
Reference. For more information about the DBMS_STATS package, refer to the Oracle9i
Supplied PL/SQL Packages and Types Reference.

Bitmap Indexes

Bitmap indexes optimize the performance of materialized views at runtime. Fact
materialized views for the OLAP API include bitmap indexes for all columns that
contain dimension values.

The following SQL statements create bitmap indexes.

CREATE BI TMAP | NDEX i ndex_name ON nv_nane (mv_col name)
TABLESPACE t bl space_nane

PCTFREE 0

COWMPUTE STATI STI CS

LOCAL

NOLOGGE NG

The MV CREATE Statement With Concatenated Rollup

The following example shows the basic structure of the SQL statements generated
by OLAP Summary Advisor to create a concatenated rollup style fact MV for the
OLAP API. The following general characteristics apply:

« The SELECT statement contains SUM col umm) and COUNT(col umm) function
calls for all measures in the cube (that is, all aggregated columns in the fact
table), and a COUNT(*) function call.

« The SELECT list contains all GROUP BY columns.

» Thelist of level key columns always appear in the exact same order, especially
in the GROUPI NG _| Dand GROUP BY clauses.

The following example shows the basic syntax.

CREATE MATER ALl ZED M EWnvnare
partition by range (gid)
(partition values | ess than (1),

partition val ues | ess than (MAXVALLE))
BU LD | MMED ATE
REFRESH FORCE

31-4 Oracle9i OLAP User's Guide

The MV CREATE Statement With Concatenated Rollup

ENABLE QUERY RBWR TE

AS

SELECT SUM neasurel) target, GONT(neasurel) target,
SUM neasure2) target, QOUNT(neasure2) target,

QONT(*) GONT_CF STAR select _list
hierarchl |evel 1, hierarchl level 2, ...,
hi erarch2 | evel 1, hierarch2 |evel 2,...
QROPING I D hierarchl | evel 1, hierarchl level 2, ...,
hierarch2_level 1, hierarch2_level2,...) gid
FROM dintabl el, dimable2,...
WHERE (di mkeyl=fact_keyl) AND (di mkey2=fact_key2)...A\D ..
GRAUPBY
hierarchl level 1, RALUP(hierarchl |eveln2,... hierarchl |eveln),
hi erarch2 | evel 1 ROLLUP(hierarch2_| evel n2,... hierarch2 | eveln,

hi erarchn_| evel 1 ROLLUP(hi erarchn_l evel 2... hierarchn_| evel n)
where:
nmeasur el, neasure 2.. are the measures in the fact table.

sel ect _|i st are the dimension levels from hi erarchl_| evel 1 to
hi erarchn_I evel n.

hi erarchl. .. hi erar chn are the dimension hierarchies, beginning with the
hierarchy with the most levels (1) and ending with the hierarchy with the fewest
levels (1). Note that this ordering is important.

| evel 1.. .1 evel n are the columns in the related dimension tables, from the
highest (1) to the lowest (1) levels of aggregation.

di m key is the key column in the dimension table.

fact _key is the related column in the fact table.

Creating Fact Materialized Views With OLAP Summary Advisor 31-5

Sample Script for the COST Cube

Sample Script for the COST Cube

The following sample script creates materialized views in concatenated rollup form
for the COST_CUBE cube, which is mapped to the COSTS fact table in the SH
schema.

This script creates two materialized views, one for each combination of hierarchies
associated with the COST_CUBE cube.

create materialized view
COST_CUBE_1_OLAP
partition by range (gid) (
partition values |ess than
partition values |ess than
partition values |ess than
partition values |ess than
partition values |ess than
partition values |ess than
partition values |ess than
partition values |ess than
partition values |ess than
partition values |ess than
partition values |ess than
partition values |ess than
partition values |ess than
partition values |ess than
partition values |ess than
partition values |ess than
pctfree 5 pctused 40
t abl espace SH_DATA
bui I'd imedi ate
using no index
refresh force
enabl e query rewite
AS
SELECT

GROUPI NG_I D(TI MES. CALENDAR_YEAR, TI MES. CALENDAR_QUARTER_DESC,

TI MES. CALENDAR_MONTH_DESC, TI MES. TI ME_I D, PRCDUCTS. PROD_TOTAL,

PRODUCTS. PROD_CATEGORY, PRCODUCTS. PROD_SUBCATEGORY,

PRODUCTS. PROD | D) gi d,

SUM COSTS. UNI T_COST) SUM OF UNI T_COST,

SUM COSTS. UNI T_PRI CE) SUM OF_UNI T_PRI CE,

COUNT(*) COUNT_OF_STAR,

TI MES. CALENDAR_YEAR CALENDAR YEAR 1,

TI MES. CALENDAR QUARTER DESC CALENDAR QUARTER DESC 2,

TI MES. CALENDAR _MONTH DESC CALENDAR MONTH_DESC 3,

1),
3),
7,
16),
17),
19),
23),
48),
49),
51),
55),
112),
113),
115),
119),
MAXVAL UE))

N AN A A A A AA AR AAA A

31-6 Oracle9i OLAP User's Guide

Sample Script for the COST Cube

TIMES. TIME_I D TI ME_I D_4,
PRODUCTS. PROD_TOTAL PRCD_TOTAL_10,
PRODUCTS. PROD_CATEGORY PROD_CATEGCRY_ 11,
PRODUCTS. PROD_SUBCATEGCRY PROD_SUBCATEGORY 12,
PRODUCTS. PROD_| D PROD_I D 13
FROM
SH. TI MES TI MES,
SH. PRODUCTS PRODUCTS,
SH. COSTS COSTS
WHERE
(TIMES. TIME_I D = COSTS. TI ME_I D) AND
(PRODUCTS. PRCD_| D = COSTS. PROD | D)
GROUP BY
TI MES. CALENDAR YEAR |
ROLLUP
(TI MES. CALENDAR QUARTER DESC, Tl MES. CALENDAR MONTH DESC, TIMES. TI ME_I D),
PRODUCTS. PROD_TOTAL |
ROLLUP
(PRODUCTS. PROD_CATEGORY, PRODUCTS. PROD_SUBCATEGORY, PRODUCTS. PRCD_I D) ;

execute dbnms_stats.gather _table stats(’'SH, 'COST_CUBE 1 OLAP', degree=>
dbns_stats. defaul t _degree, estimate_percent=>
dbns_stats. aut o_sanpl e_si ze, nethod_opt=>
"for all colums size 1 for colums size 254 G D , granularity=>" GOBAL") ;
ALTER TABLE COST_CUBE 1 _OLAP M NI M ZE RECORDS_PER BLOCK ;

CREATE BI TMAP | NDEX Bl _COST_CALENAR QUESC 2 1 ON COST_CUBE 1 OLAP(CALENDAR
QUARTER DESC 2)

LOCAL

COMPUTE STATI STI CS

TABLESPACE SH_| DX

PARALLEL PCTFREE 0

NOLOGG NG

CREATE BI TMAP | NDEX Bl _COST_CALENAR MOESC 3 1 ON COST_CUBE 1 OLAP(CALENDAR
MONTH_DESC 3)

LOCAL

COMPUTE STATI STI CS

TABLESPACE SH_| DX

PARALLEL PCTFREE 0

NOLOGG NG

CREATE BI TMAP | NDEX Bl _COST TIME D ID 4 1 ON COST_CUBE 1_OLAP(TIME_ID 4)

LOCAL
COMPUTE STATI STI CS

Creating Fact Materialized Views With OLAP Summary Advisor 31-7

Sample Script for the COST Cube

TABLESPACE SH_| DX
PARALLEL PCTFREE 0
NOLOGG NG

CREATE BI TMAP | NDEX Bl _COST_PROD ATEGOORY 22 1 ON COST_CUBE_1_OLAP(PROD_
CATEGORY_11)

LOCAL

COVPUTE STATI STI CS

TABLESPACE SH_| DX

PARALLEL PCTFREE 0

NOLOGG NG

CREATE BI TMAP | NDEX Bl _COST_PROD UBCATORY 24 1 ON COST_CUBE_1_OLAP(PROD_
SUBCATEGCRY_12)

LOCAL

COMPUTE STATI STI CS

TABLESPACE SH_| DX

PARALLEL PCTFREE 0

NOLOGGE NG

CREATE BI TMAP | NDEX Bl _COST_PROD D I D 26_1 ON COST_CUBE_1_OLAP(PROD | D 13)
LOCAL

COMPUTE STATI STI CS

TABLESPACE SH_| DX

PARALLEL PCTFREE 0

NOLOGGE NG

execute dbnms_stats.gather _table stats(’'SH, 'COST_CUBE 1 OLAP', degree=>
dbns_stats. defaul t _degree, estinate_percent=>

dbrms_stats. aut o_sanpl e_si ze, nethod_opt=>

"for all hidden colums size 254’ | granularity=>" GLOBAL') ;

execute cwr2_ol ap_cube. set_nmv_summary_code(’' SH, ' COST_CUBE', 'ROLLUP') ;

create materialized view
COST_CUBE_2_OLAP

partition by range (gid) (
partition values |ess than(1),
partition values |ess than(3),
partition values |ess than(7),
partition values |ess than(15),
partition values |ess than(32),
partition values |ess than(33),
partition values |ess than(35),
partition values |ess than(39),

31-8 Oracle9i OLAP User’s Guide

Sample Script for the COST Cube

partition values |ess than(47),
partition values |ess than(96),
partition values |ess than(97),
partition values |ess than(99),
partition values |ess than(103),
partition values |ess than(111),
partition values |ess than(224),

(

(

(

(

(

partition values |ess than(227),

partition values |ess than(231),

partition values |ess than(239),

partition values |ess than(MAXVALUE))

pctfree 5 pctused 40

t abl espace SH_DATA

bui I'd i medi ate

using no index

refresh force

enabl e query rewite

AS

SELECT
GROUPI NG _| D(PRODUCTS. PROD TOTAL, PRODUCTS. PROD_CATEGCRY,
PRODUCTS. PROD_SUBCATEGORY, PRODUCTS. PROD I D, TI MES. FI SCAL_YEAR,
TI MES. FI SCAL_QUARTER DESC, TI MES. FI SCAL_MONTH_DESC,
TI MES. WEEK_ENDI NG DAY, TIMES. TIME_ID) gid,
SUM COSTS. UNI T_COST) SUM OF_UNI T_QGST,
SUM COSTS. UNI T_PRI CE) SUM OF_UNI T_PRI CE,
COUNT(*) COUNT_OF_STAR,
TI MES. FI SCAL_YEAR FI SCAL_YEAR 5,
TI MES. FI SCAL_QUARTER DESC FI SCAL_QUARTER DESC 6,
TI MES. FI SCAL_MONTH_DESC FI SCAL_NMONTH_DESC 7,
TI MES. WVEEK_ENDI NG DAY WEEK_ENDI NG DAY 8,
TIMES. TIME_ID TIME_I D9,
PRODUCTS. PROD_TOTAL PROD TOTAL_ 10,
PRODUCTS. PROD_CATEGORY PROD CATEGORY_11,
PRODUCTS. PROD_SUBCATEGORY PROD SUBCATEGORY_12,
PRCDUCTS. PROD | D PRCD | D 13

FROM
SH. PRCDUCTS PRODUCTS,
SH. TI MES TI MES,
SH. COSTS COSTS

WHERE
(PRODUCTS. PROD_I D = COSTS. PROD | D) AND
(TIMES. TIME_ID = OCSTS. TIME_ID) GROUP BY
PRCDUCTS. PROD_TOTAL

)
)
)
partition values |ess than(225),
)
)
)

Creating Fact Materialized Views With OLAP Summary Advisor 31-9

Sample Script for the COST Cube

ROLLUP
(PRODUCTS. PROD_CATEGORY, PRODUCTS. PROD_SUBCATEGORY, PRODUCTS. PRCD_| D),
TI MES. FI SCAL_YEAR ,
ROLLUP
(TI VES. FI SCAL_QUARTER DESC, TI MES. FI SCAL_MONTH DESC,
TI MES. VEEK_ENDI NG DAY, TIMES. TIME_ID) ;

execute dbms_stats.gather _table stats(’SH, 'COST_CUBE 2_OLAP', degree=>
dbns_stats. defaul t _degree, estimate_percent=>
dbns_stats. aut o_sanpl e_si ze, nethod_opt=>
"for all colums size 1 for colums size 254 @D , granularity=>" GOBAL") ;
ALTER TABLE COST_CUBE 2_OLAP M NI M ZE RECORDS_PER BLOCK ;

CREATE BI TMAP | NDEX Bl _COST_PRCD_ATEGOCRY_33_2 ON COST_CUBE_2_OLAP(PRCD_
CATEGORY_11)

LOCAL

COMPUTE STATI STI CS

TABLESPACE SH_| DX

PARALLEL PCTFREE 0

NOLOGA NG

CREATE BI TMAP | NDEX Bl _COST_PROD_UBCATORY 36_2 ON COST_CUBE_2_OLAP(PROD_
SUBCATEGCRY_12)

LOCAL

COMPUTE STATI STI CS

TABLESPACE SH_| DX

PARALLEL PCTFREE 0

NOLOGG NG

CREATE BI TMAP | NDEX BI _COST_PROD D I D 39 2 ON COST_CUBE 2_OLAP(PROD | D 13)
LOCAL

COVPUTE STATI STI CS

TABLESPACE SH | DX

PARALLEL PCTFREE 0

NOLOGE NG

CREATE BI TMAP | NDEX Bl _COST_FI SCA QUARESC 24 2 ON COST_CUBE 2 OLAP(FI SCAL_
QUARTER DESC_6)

LOCAL

COVPUTE STATI STI CS

TABLESPACE SH | DX

PARALLEL PCTFREE 0

NOLOGG NG

31-10 Oracle9i OLAP User’'s Guide

Sample Script for the COST Cube

CREATE BI TMAP | NDEX Bl _COST_FI SCA MONTESC 28_2 ON COST_CUBE_2_OLAP(FI SCAL_MONTH_
DESC 7)

LOCAL

COMPUTE STATI STI CS

TABLESPACE SH_| DX

PARALLEL PCTFREE 0

NOLOGE NG

CREATE BI TMAP | NDEX Bl _COST_VEEK_NDI NGDAY_32_2 ON COST_CUBE_2_OLAP(VEEK_ENDI NG_
DAY_8)

LOCAL

COMPUTE STATI STI CS

TABLESPACE SH_| DX

PARALLEL PCTFREE 0

NOLOGG NG

CREATE BI TMAP | NDEX Bl _COST_TIME_D I D 36_2 ON COST_CUBE_2_OLAP(TIME_I D 9)
LOCAL

COMPUTE STATI STI CS

TABLESPACE SH_| DX

PARALLEL PCTFREE 0

NOLOGG NG

execute dbns_stats. gather_table_stats(’'SH, ' COST_CUBE_2_OLAP', degree=>
dbnms_stats. defaul t _degree, estimate_percent=>
dbns_stats. aut o_sanpl e_si ze, nethod_opt=>
"for all hidden colums size 254’ , granularity=> GLOBAL') ;

execute cwr2_ol ap_cube. set_nmv_summary_code(’' SH, 'COST_CUBE', 'ROLLUP') ;

Creating Fact Materialized Views With OLAP Summary Advisor 31-11

Sample Script for the COST Cube

31-12 Oracle9i OLAP User’s Guide

A

Upgrading From Express Server

This appendix provides upgrading instructions and identifies some of the major
differences between Oracle Express Server 6.3 and Oracle9i OLAP. It is intended to
provide a frame of reference to help you understand the material presented in this
guide.

This chapter includes the following topics:

Administration

Data Transfer

Localization

Applications Support
Programming Language Changes

How to Upgrade an Express Database

See Also: "What’s New in Oracle OLAP?" for a list of major
features introduced in this release.

Upgrading From Express Server A-1

Administration

Administration

Oracle OLAP is installed as an option in Oracle Enterprise Edition, and it is now
integrated with the Oracle database. While Express Server runs in a service
environment, Oracle OLAP runs within the database kernel.

In OracleYi, the term database refers only to the relational database. Express
databases are now called analytic workspaces. In Oracle OLAP, an analytic
workspace can be used either as a transient data cache or as a persistent data
repository. A persistent analytic workspace is stored as a LOB in a relational table.
There are no “. db” files.

The administrative tasks for Oracle OLAP are merged with the database tool set.

Authentication of Users

Oracle OLAP does not use operating system identities, except for the installation
user under whose identity the RDBMS is installed. You can delete other operating
system identities created for use by Express Server (such as the DBA user, the
Initialize user, the Default user, and individual user names) if they have no other
purpose.

All authentication is performed by the Oracle RDBMS. Applications must always
present credentials before opening a session, and those credentials must match a
user name and password stored in the relational database. Before users can access
Oracle OLAP, you must define user names and passwords in the database.

For users to access operating system files, they must have access rights to a
directory alias that is mapped to the physical directory path. This access is granted
either to an individual user ID or to a database role.

Management Tools

Oracle Enterprise Manager encompasses the tools for administering Oracle OLAP,
providing a common user interface across all platforms. Various PL/SQL packages
extend the functionality currently available through Oracle Enterprise Manager and
provide an alternative to its use.

Performance data can be collected in system tables the same as other Oracle
database performance statistics.

OLAP Instance Manager, oesngr, and oescnd are not available.

A-2 Oracle9i OLAP User's Guide

Localization

Data Transfer

Oracle OLAP runs within the Oracle database kernel. An Oracle OLAP session is
always connected to the database. You do not open a connection with the database
as a separate or optional step.

You can move data between an analytic workspace objects (such as variables and
dimensions) and relational tables in the following ways:

« The OLAP DML's SQL command fetches data into dimensions and variables for
further manipulation. A new SQL | MPORT command facilitates bulk data
transfer from relational tables into the analytic workspace, and a new SQL
I NSERT DI RECT command facilitates data transfer from the analytic
workspace into relational tables.

= APL/SQL package, CWWR_OLAP_AW CREATE, provides procedures for
creating an analytic workspace from relational tables and OLAP Catalog
metadata, and for generating views of the workspace.

= Using SQL table functions, it is now possible for a SQL-based application to
manipulate and extract data from an analytic workspace. Express Server did not
permit a data transfer to be initiated externally.

ODBC is not available, and thus access to third-party databases is not available
directly from Oracle OLAP.

Oracle Express Relational Access Administrator and Oracle Express Relational
Access Manager are not available.

Localization

The Express Server language support has been replaced by Oracle Globalization
Technology, which provides more extensive localization support and is much easier
to administer than the localization features of Express Server. The RDBMS and
Oracle OLAP typically use the same character set, which is selected during
installation.

If you are upgrading Express databases that used translation tables, then you can
delete those tables because they are not needed by Oracle OLAP. Likewise, you
should check your Express programs for use of obsolete commands and keywords
that supported translation tables. If you plan to import Express databases or to use
Oracle OLAP to access multibyte data in external files, then you might find

Table A-1, " Multibyte Character Set Equivalents" helpful in identifying a character
set. Note that the CHARSET option is now obsolete.

Upgrading From Express Server A-3

Applications Support

Support for Globalization Technology has been added to the OLAP DML. These
options allow an application to query the current localization settings and override
the behaviors controlled by the default language and territory.

Note: Oracle OLAP does not support EBCDIC character sets.

Table A-1 identifies the Unicode character sets available in Oracle that are
equivalent to the Express Server character sets.:

Table A-1 Multibyte Character Set Equivalents

Express Server
DefaultCharacterSet Parameter or

CHARSET Option Value Equivalent Unicode Character Set
EUC JA16EUC

SHI FTJI' S JA16SJ1 S

HANGEUL KOL6KSC5601

SCHI NESE ZHS16GBK

TCH NESE ZHT16BI G

Applications Support

Oracle OLAP allows applications to access its multidimensional data directly
through either a Java API or SQL. Express SPL programs can be executed using
either programming method. Be sure to review all SPL programs to remove
commands that are no longer available and to take advantage of new functionality.

The CWWR2_OLAP_AW CREATE package contains procedures for creating analytic
workspaces and generating views of analytic workspaces. You can create OLAP
Catalog metadata for use by the OLAP API, or use SQL to run directly against these
views of your multidimensional data.

You cannot run Windows C++, HTML, or Java applications that were developed for
use with Express Server.

Programming Environment

Applications for Oracle OLAP can be developed in Java using the OLAP APL
SQL-based applications can access OLAP data through views or manipulate it
directly through SQL table functions.

A-4 Oracle9i OLAP User's Guide

Programming Language Changes

OLAP Worksheet provides an interactive environment for developing stored
procedures in either the OLAP DML or SQL. The DBM5_AWprocedure executes
OLAP DML commands from within a SQL program.

You cannot connect to Oracle OLAP using Express Administrator, Personal Express,
or the Express Connection Utility.

Communications

Metadata

Oracle OLAP provides communications through Oracle Call Interface (OCI) and
Java Database Connectivity (JDBC).

OLAP Worksheet uses XCA for communication with the analytic workspace.
However, XCA is not supported for user-developed applications and may produce
unexpected results.

SNAPI is no longer available. Session sharing is not supported.

In Oracle OLAP, the database administrator defines multidimensional objects and
associated OLAP metadata in the relational database using PL/SQL packages for
use by the OLAP APL

OLAP Worksheet allows DBAs and applications developers to create objects in the
analytic workspace by issuing DML commands. For the OLAP API to access these
objects, the appropriate analytic workspace metadata must be defined.

Oracle Express Administrator is not available in Oracle OLAP, and the Oracle
Express Objects metadata that it generated is not used by the OLAP API.

Programming Language Changes

Numerous changes have been made to the Express Stored Procedure Language
(now called the OLAP Data Manipulation Language or OLAP DML).

New Commands

Support in the following areas has been added to the OLAP DML
= Parallel aggregate
= Allocation

= Dynamic model execution

Upgrading From Express Server A-5

How to Upgrade an Express Database

« Bulk data transfers between analytic workspaces and relational tables
= Byte manipulation functions
« Data conversion functions

= New data types

Obsolete Commands

Support in the following areas has been dropped:

« EXTCALL
« ODBC

= SNAPI

« XCA

« Operating system commands

For comprehensive lists of new, obsolete, and significantly revised commands, open
OLAP DML Help and click List of Changes on the Contents page.

UPDATE and COMMIT

The UPDATE command moves analytic workspace changes from a temporary area
to the database table in which the workspace is stored. Your changes are not saved
until you execute a COMM T command, either from your Oracle OLAP session or
from SQL.

If you want changes that you have made in a workspace to be committed when you
execute the COMM T command, then you must first update the workspace using the
UPDATE command. Changes that have not been moved to the table are not
committed.

The COMWM T command executes a SQL COMM T command. All changes made
during your session are committed, whether they were made through Oracle OLAP
or through another form of access (such as SQL) to the database.

How to Upgrade an Express Database

Follow these steps to upgrade an Express database for use as an analytic workspace
in Oracle9i:

A-6 Oracle9i OLAP User's Guide

How to Upgrade an Express Database

Open a connection with Express Server and create an EIF file of your Express
database, using a command such as this:

EXPORT ALL TO EIF FILE '"upgrade.eif’ REWRITE

where upgr ade. ei f is the name of the file being created.

Copy the file to a directory that has a directory alias in the Oracle database and
to which you have access rights.

For information about directory aliases, refer to "Controlling Access to External
Files" on page 6-10.

Open a connection to the Oracle database using OLAP Worksheet.

For information about using OLAP Worksheet, refer to the Oracle9i OLAP
Developer’s Guide to the OLAP DML.

Create an empty analytic workspace with a command such as this:
AW CREATE fi nanci al s TABLESPACE ol apts
where f i nanci al s is the name of the analytic workspace and ol apt s is the

name of a tablespace allocated for your use. Note that the DATABASE command
has changed to the AWcommand.

Copy the object definitions and data from the EIF file into the new analytic
workspace with a command such as this:

| MPORT ALL FROM EI F FILE "alias/upgrade.eif’ DATA DFNS

where al i as is the name of the directory alias, and upgr ade. ei f is the name
of the EIF file.

Save your changes to the new analytic workspace:

UPDATE

Commit the new analytic workspace to the Oracle database:

COW T

Revise any programs in the analytic workspace to delete references to obsolete
commands. Save these changes.

Upgrading From Express Server A-7

How to Upgrade an Express Database

A-8 Oracle9i OLAP User's Guide

A

abstract data types

See object types
access rights, 5-3, 6-9
ADD_ALTER_SESSION procedure, 8-3
administration privileges, 5-3
ADT, 3-2,9-2,12-9,12-10
aggregate cache

performance statistics, 7-3
aggregation, 2-4,9-2,10-2, A-5
ALL_OLAP2 views, 14-1 to 14-16, 24-2
allocation, 2-4, A-5
ALTER SESSION commands, 6-4, 8-2
analytic workspaces

creating from relational tables, 9-1 to 9-7

creating metadata for, 5-5,9-1, 15-1

data manipulation, 2-2

database storage, 6-12

defined, 1-6

enabling for SQL access, 3-3, 9-4, 15-2, 15-3,

16-1, 16-6, 16-13, 25-2

performance counters, 7-5
applications

business analysis, 1-3

comparison, 1-8

components of SQL-based, 3-2

differences from Express, A-4
ATTRIBUTE subclause (limit maps), 12-18
attributes

See Also dimension attributes

See Also level attributes

creating, 5-8,5-10

defined, 4-14

Index

in an object type, 12-9
in analytic workspaces, 12-8
viewing, 14-10
authentication, 6-9
AWS tables, 6-12

B

BFILE security, 6-10

BI Beans
described, 1-7, 3-6, 3-7
thick-client configuration, 3-7
thin-client configuration, 3-9

C

caches
performance statistics, 7-3
use in iterative queries, 3-15
calculation engine

defined, 1-6
calculations

runtime, 2-2
catalogs

See measure folders
character sets, A-3
CHARSET option, A-3
CLEAN_ALTER_SESSION procedure, 8-6
composite dimensions, 12-3
configuration procedures, 6-2
conjoint dimensions, 12-3
CONNECT role, 6-9
CreateAWAccessStructures procedure, 15-18
CreateAW AccessStructures_FR procedure, 15-13,

Index-1

15-17
CREATECUBELEVELTUPLE procedure, 30-12
CREATEDIMLEVTUPLE procedure, 30-11
CREATEDIMMV_GS procedure, 30-14
CREATEFACTMV_GS procedure, 30-13
crosstab bean, 3-11
Cube Viewer, 5-9
cubes
creating, 13-3,17-1,17-2
defined, 4-14,5-8
in analytic workspaces, 9-1to 9-7
materialized views, 10-5, 30-1 to 30-14,
31-1 to 31-11
viewing, 5-9,14-5
cursors, 3-15
custom aggregates, 2-3
custom measures, 3-12
CWM_CLASSIFY package, 5-11,28-1 to 28-18
subprograms, 28-3
CWM2, 5-4to5-5,5-9
write APIs, 5-10, 13-1 to 13-12
CWM2_OLAP_AW_ACCESS package, 3-3, 5-5,
5-11, 15-1 to 15-18
subprograms, 15-16
CWM2_OLAP_AW_CREATE package, 3-3,5-5,9-2
CWM2_OLAP_CUBE package, 5-10,17-1 to 17-13
subprograms, 17-2
CWM2_OLAP_DIMENSION package, 5-10,
18-1 to 18-11
subprograms, 16-2,18-2,24-3
CWM2_OLAP_DIMENSION_ATTRIBUTE
package, 19-1to 19-11
subprograms, 19-3
CWM2_OLAP_HIERARCHY package, 5-10,
20-1 to 20-12
subprograms, 20-2
CWM2_OLAP_LEVEL package, 5-10, 21-1 to 21-13
subprograms, 21-2
CWM2_OLAP_LEVEL_ATTRIBUTE
package, 5-10,22-1to 22-13
subprograms, 22-3
CWM2_OLAP_MEASURE package, 5-10,
23-1 to 23-9
subprograms, 23-2
CWM2_OLAP_METADATA_REFRESH

Index-2

package, 24-1
CWM2_OLAP_PC_TRANSFORM package, 5-5,

5-11, 25-1 to 25-8
CWM2_OLAP_TABLE_MAP

package, 26-1 to 26-22
CWM2_OLAP_VALIDATE package, 5-11

D

data exchange commands, 2-5
data formatting, 3-10
data selection commands, 2-5
data storage, 4-7
data striping, 6-6
database cache, 7-3
database configuration, 6-2
database initialization, 8-1, 8-2
database security, 6-9
DB_CACHE_SIZE parameter, 6-3, 6-4
DBMS_AW package, 2-9,3-4,5-5
EXECUTE procedure, 11-3
GETLOG function, 11-5
INTERP function, 11-8
INTERP_SILENT function, 11-6
INTERPCLOB function, 11-10
overview, 11-1to11-2
PRINTLOG procedure, 11-16
DBMS_ODM package, 10-3,29-2, 30-1 to 30-14
subprograms, 30-11
DELETE_ALTER_SESSION procedure, 8-5
demand planning systems, 1-4
derived data, 4-4
dimension alias, 14-6
dimension attributes
creating, 19-1
defined, 4-14
viewing, 14-9
DIMENSION clause (limit maps), 12-16
dimension hierarchies
See hierarchies
dimension tables, 4-4,5-7,13-4
dimension views
defining for workspace objects, 9-5, 15-5
dimensions
analytic workspace, 12-3

creating, 5-7,5-8,13-2,18-1
defined, 4-10
embedded-total, 25-5
exposing in views, 12-3
materialized views, 10-4,29-1 to 29-11
parent-child, 25-1
time, 4-10,5-7
valid, 13-6
viewing, 14-7
directory aliases, 6-10
drilling, 3-10
dynamic performance tables, 6-13
dynamic performance views, 7-1to7-6

E

embedded total dimension views
creating, 9-5,12-20, 15-5
end-date attribute, 4-11
ETL process, 2-2
ETT tool, 4-2
EXECUTE procedure, 11-3
Express Connection Utility (obsolete), A-5
Express databases, A-6
Express Relational Access Administrator
(obsolete), A-3
Express Relational Access Manager (obsolete), A-3

F

fact tables, 4-4,4-9,5-4,5-8,13-4, 14-16
joining with dimension tables, 13-5
supported configurations, 13-5

fact views
defining from workspace objects, 9-6, 15-8

FAMILYREL subclause (limit maps), 12-17

FETCH command (DML), 12-14

file read /write commands, 2-5

files
allowing access, 6-10

financial applications, 1-3

financial operations, 2-6

fixed views, 7-2

forecasting commands, 2-6

formatting

data, 3-10

G

GETLOG function, 11-5

GID
See grouping IDs

GID subclause (limit maps), 12-17

globalization, A-3

Globalization Technology . See NLS

graph bean, 3-11

grouping IDs, 9-5,9-6, 12-6, 14-15, 15-6, 15-12, 25-5
parent, 9-5,12-7,15-6

GROUPINGID command, 12-6

H

hierarchical dimensions, 12-3
hierarchies
creating, 5-8, 20-1
custom sorting, 14-14, 26-6
defined, 4-13,20-2
viewing, 14-8, 14-10, 14-14
hierarchy dimension
defined, 12-4
HIERARCHY subclause (limit maps), 12-16
HIERHEIGHT command, 12-7
historical data, 4-3

IDE

defined, 3-6
INHIERARCHY subclause (limit maps), 12-17
inhierarchy variables, 12-5
initialization parameters, ?? to 6-5, 8-1, 8-2
init.ora file, 6-3,8-2
INTERP function, 11-8
INTERP_SILENT function, 11-6
INTERPCLOB function, 11-10

J

Java
described, 3-4

Index-3

sandbox security, 3-5
JDeveloper, 3-6

L

language support, A-3
level attributes
creating, 22-1
defined, 4-14,22-2
viewing, 14-9, 14-12
level dimensions, 12-5
levels
creating, 5-8,21-1
defined, 4-13
viewing, 14-8
limit maps, 12-14 to 12-18
syntax, 12-14
localization, A-3
login names, 6-9
lookup tables
See dimension tables
LOOP clause (limit maps), 12-18

M

materialized views, 4-4
asymmetric materialization, 10-7
concatenated rollup, 10-3, 10-6, 31-1 to 31-11
cubes, 30-1 to 30-14, 31-1 to 31-11
CWM2, 30-2
defined, 10-2
dimensions, 29-1 to 29-11
for OLAP API, 10-1to10-7
grouping sets, 10-3, 10-6, 30-2 to 30-14
MDI
defined, 3-6
MEASURE clause (limit maps), 12-15
measure folders, 28-2
creating, 28-1
defined, 14-11
viewing, 14-11
measures
analytic workspace, 12-3
creating, 23-1
custom, 3-12

Index-4

defined, 4-9,23-2

exposing in a view, 12-3

viewing, 14-5
metadata

defined, 4-4,4-8
modeling commands, 2-7
modeling support, A-5
MR_REFRESH Procedure, 24-3
MRV_OLAP views, 24-2
multibyte character sets

Express equivalents, A-4
multidimensional data

enabling for SQL access, 9-1, 9-4, 15-1, 16-1,

16-6, 16-13

N

NLS_LANG configuration parameter, A-3
n-pass functions, 3-15

number formatting, 3-10

numeric computation, 2-7

@)

object types, 3-2,9-2,12-9,12-10
object-oriented programming, 3-12
ODBC support (obsolete), A-3
oescmd program (obsolete), A-2
oesmgr program (obsolete), A-2
OLAP
defined, 1-2
OLAP API
defined, 1-7
described, 3-6, 3-12
OLAP API optimization, 8-1, 8-2
OLAP beans, 3-7,3-12
OLAP Catalog
accessing, 5-3
classification system, 14-11
defined, 1-8,5-2
metadata entities, 13-2
metadata model tables, 5-2
preprocessors, 25-1
read APIs, 5-3,13-8, 14-1,24-1
refreshing views for OLAP API, 24-1

viewing, 13-8,14-1,24-1

write APIs, 5-3,13-1to 13-12
OLAP commands

executing in SQL, 11-3, 11-6, 11-8, 11-10, 11-16
OLAP DML

defined, 1-6

described, 2-1to2-9

executing commands, 2-9
OLAP Instance Manager (obsolete), A-2
OLAP Management tool, 5-6
OLAP metadata

creating for a dimension table, 13-8

creating for a fact table, 13-11

creating for CWM2_OLAP_AW_CREATE, 9-3

creating in Enterprise Manager, 5-6

creating with CWM2 APIs, 5-9

logical steps for creating, 5-3

mapping, 13-4,13-10 to 13-12, 14-12, 14-13

materialized views, 10-4

tools for creating, 5-2

validating, 13-5,27-1

warehouse requirements, 5-4
OLAP performance views, 7-2
OLAP Summary Advisor, 10-4,29-2,31-1 to 31-11
OLAP Worksheet, 2-9, A-5
OLAP_API_SESSION_INIT package, 8-1to 8-7
OLAP_DBA role, 5-3
OLAP_PAGE_POOL_SIZE, 6-4
OLAP_TABLE function

about, 12-1to 12-23

in SELECT statement, 12-10

retrieving session log, 11-5

syntax, 12-12

uses, 3-4
OLAP2_CATALOG_ENTITY_USES view, 14-11
OLAP2_CATALOGS view, 14-11
OLAP2_CUBE_DIM_USES view, 14-6
OLAP2_CUBE_MEAS_DIM_USES view, 14-6
OLAP2_CUBE_MEASURE_MAPS view, 14-12
OLAP2_CUBE_MEASURES view, 14-5
OLAP2_CUBES view, 14-5
OLAP2_DIM_ATTR_USES view, 14-10
OLAP2_DIM_ATTRIBUTES view, 14-9
OLAP2_DIM_HIER_LEVEL_USES view, 14-10
OLAP2_DIM_HIERARCHIES view, 14-8

OLAP2_DIM_LEVEL_ATTR_MAPS view, 14-12
OLAP2_DIM_LEVEL_ATTRIBUTES view, 14-9
OLAP2_DIM_LEVELS view, 14-8
OLAP2_DIMENSIONS view, 14-7
OLAP2_FACT_LEVEL_USES view, 14-16
OLAP2_FACT_TABLE_GID view, 14-15
OLAP2_HIER_CUSTOM_SORT view, 14-14
OLAP2_JOIN_KEY_COLUMN_USES view, 14-14
OLAP2_LEVEL_KEY_COLUMN_USES
view, 14-13

OLAPSYS user, 5-3
OLTP

defined, 1-2
optimization

OLAP API, 8-1,8-2
optimization techniques, 6-5
Oracle Globalization Support

Seealso NLS, i-xxxv
OUTFILE command

affect on DBMS_AW procedure, 11-4

P

page pool

for ORACLE OLAP, 6-4

performance statistics, 7-3
paging

described, 3-10
parallel_max_servers parameter, 6-3
parameter file, 6-3
parent-child relations, 12-4

defined, 12-4
PARENTGID subclause (limit maps), 12-17
performance counters, 6-13, 7-1 to 7-6
Personal Express (obsolete), A-5
pfile settings, 6-3
PGA allocation, 6-4,7-3
pivoting

described, 3-10
POSTDMLCMD clause (limit maps), 12-18
predictive analytsis applications, 1-3
PREDMLCMD clause (limit maps), 12-18
Presentation Beans, 3-7
print buffer, 11-3
PRINTLOG procedure, 11-16

Index-5

PS$ tables, 6-12

Q

query builder, 3-12

QUERY REWRITE system privilege, 6-9

querying methods, 1-9
quotation marks
in OLAP DML, 11-3

R

rank formatting, 3-11
referential integrity, 2-3
regressions, 2-6

Relational Access Administrator (obsolete), A-3
Relational Access Manager (obsolete), A-3
reporting applications, 1-3

repository
application runtime,
result sets, 3-15
roles, 6-9
rollup form
defined,
row
defining, 12-9

12-17

ROW2CELL clause (limit maps),

S

3-10

12-18

schemas

star, snowflake defined, 4-6

star,snowflake,
SELECT privilege, 6-9

server parameter file, 6-3

SERVEROUTPUT option,
session cache

performance statistics,
session counters, 7-6
session logs

printing, 11-16

retrieving, 11-5
session sharing, A-5
session statistics, 7-5
sessions parameter, 6-3

Index-6

5-4,5-6

11-3, 11-16

7-3

simultaneous equations,

2-7

SNAPI communications (obsolete), A-5

SPLExecutor class, 2-9
SQL

embedding OLAP commands,

11-10, 11-16

11-3, 11-6, 11-8,

SQL command (OLAP DML), A-3
SQL FETCH command, 2-5

SQL-99 extensions, 1-5
SQL-based applications
components, 3-2

star schema

materialized views, 10-2

statistical operations, 2-8

stoplight formatting, 3-11

striping, 6-6
summary management

See analytic workspaces

See materialized views
summary tables
See materialized views

T

table

creating from object types,

table bean, 3-11

table functions
defined, 1-7,3-2

tablespaces

12-10

for analytic workspaces, 6-5

text manipulation, 2-8
thick-client applications
defined, 3-5
illustrated, 3-7
thin-client applications
defined, 3-5
illustrated, 3-9
tiers, 3-7,3-9
time dimensions,
time periods

4-10, 5-

7

regular, irregular defined, 4-10

time series functions, 2-8

time-span attributes, 4-11

transaction statistics, 7-6

translation tables, A-3

type
creating, 12-10

U

Unicode, A-4

user access rights, 6-9

user names, 6-9

utl_file_dir parameter, 6-3,15-2, 25-2

\Y

V$AW_CALC view, 7-3
V$AW_OLAP view, 7-5
V$AW_SESSION_INFO view, 7-6
views
creating embedded total dimensions, 9-5, 12-20,
15-5
creating embedded total measures, 12-21
creating for analytic workspaces, 9-4,15-1, 15-2,
25-2
creating rollup form, 12-23
template for creating, 12-19

w

wizards

Beans, 3-12
workspaces

See analytic workspaces

X

XCA support, A-5

Index-7

Index-8

	Contents
	Send Us Your Comments
	Preface
	Audience
	Organization
	Related Documentation
	Conventions
	Documentation Accessibility

	What’s New in Oracle OLAP?
	Oracle9i Release 2 (9.2) New Features in Oracle OLAP

	Part I� The Basics
	1 Overview
	Why OLAP?
	Analytical Processing Answers Business Questions
	Types of OLAP Applications

	The Oracle9i Integrated Relational-Multidimensional Database
	Components of Oracle OLAP
	Calculation Engine
	Analytic Workspace
	OLAP DML
	SQL Table Functions
	OLAP API
	OLAP Catalog

	Applications Access to Oracle OLAP

	2 Manipulating Multidimensional Data
	What Is the OLAP DML?
	Extensive Analytic Capabilities
	Features of the Multidimensional Model

	Basic Categories of OLAP DML Commands
	Aggregation
	Allocation
	Data Selection
	Data Exchange
	File Reading and Writing
	Financial Operations
	Forecasts and Regressions
	Models
	Numeric Computations
	Statistical Operations
	Text Manipulation
	Time Series Manipulation

	Methods of Executing OLAP DML Commands
	OLAP Worksheet: The OLAP DML Development Tool
	Embedding OLAP DML Commands in Programs

	3 Developing OLAP Applications
	Building SQL-Based OLAP Applications
	Methods of Accessing Multidimensional Data From SQL
	Embedding OLAP DML Commands in SQL

	Building Analytical Java Applications
	About Java
	Deploying Java Applications
	The Java Solution for OLAP
	Oracle Java Development Environment

	Introducing the BI Beans
	Thick-Client Configuration
	Thin-Client Configuration
	Metadata
	Runtime Repository
	Navigation
	Formatting
	Graphs
	Crosstabs
	Tables
	OLAP BI Beans
	Wizards

	Understanding the OLAP API
	How the OLAP API Accesses Multidimensional Data
	Intelligent Caching
	Calculation Capabilities

	4 Designing Your Database for OLAP
	Overview
	Preparing a Database for the OLAP API
	Types of Data Stored in a Data Warehouse
	Historical Data
	Derived Data
	Metadata

	Data Structures in Relational and Multidimensional Data Stores
	Relational Table Storage
	Multidimensional Table Storage
	Temporary and Persistent Analytic Workspaces
	About Star, Snowflake, Parent-Child, and Multidimensional Schemas
	Choosing a Schema for Your Data

	OLAP Metadata Model
	Mapping Data Objects to Metadata Objects
	Measures
	Dimensions
	Attributes
	Cubes
	Measure Folders

	5 Creating OLAP Catalog Metadata
	Overview of the OLAP Catalog
	Tools for Creating OLAP Metadata
	OLAP Catalog Components
	Logical Steps for Creating OLAP Metadata

	Accessing the OLAP Catalog
	Data Warehouse Requirements
	Basic Star or Snowflake Schema
	Dimension Tables with Complex Hierarchies
	Solved and Unsolved Fact Data
	Multidimensional Data
	Parent-Child Dimensions

	Creating Metadata Using Oracle Enterprise Manager
	Procedure: Accessing OLAP Management
	Defining Metadata for Dimension Tables
	Defining Metadata for Fact Tables
	Viewing a Cube’s Data
	Procedure: Viewing a Cube’s Data

	Creating Metadata Using PL/SQL
	Views of OLAP Catalog Metadata
	CWM2 Packages for Creating OLAP Dimensions
	CWM2 Packages for Creating Cubes
	CWM2 Package for Mapping Metadata
	CWM2 Package for Creating Analytic Workspaces
	CWM2 Package for Creating Level-Based Dimension Tables
	CWM2 Packages for Classification and Validation

	Part II� Oracle OLAP Administration
	6 Administering Oracle OLAP
	Administration Overview
	Initialization Parameters for Oracle OLAP
	OLAP_PAGE_POOL_SIZE

	Initialization Parameters for the OLAP API
	Creating Tablespaces for Analytic Workspaces
	Creating a Tablespace for Rollbacks
	Creating a Temporary Tablespace
	Creating Tablespaces for Analytic Workspaces
	Querying the Size of an Analytic Workspace

	Setting Up User Names
	Controlling Access to External Files
	Creating a Directory Alias
	Granting Access Rights to a Directory Alias
	Example: Creating and Using a Directory Alias

	Understanding Data Storage
	User-Owned Tables
	System Tables

	Monitoring Performance

	7 OLAP Dynamic Performance Views
	System Tables Referenced by OLAP Performance Views
	Summary of OLAP Performance Views
	V$AW_CALC
	V$AW_OLAP
	V$AW_SESSION_INFO

	8 OLAP_API_SESSION_INIT
	Overview
	Summary of OLAP_API_SESSION_INIT Subprograms
	ADD_ALTER_SESSION Procedure
	Syntax
	Parameters
	Exceptions
	Examples

	DELETE_ALTER_SESSION Procedure
	Syntax
	Parameters
	Exceptions
	Examples

	CLEAN_ALTER_SESSION Procedure
	Syntax
	Examples

	ALL_OLAP_ALTER_SESSION View

	9 Creating an Analytic Workspace From Relational Tables
	Choosing to Use an Analytic Workspace
	Relational and Multidimensional Data Models
	Advantages of OLAP

	Functional Summary
	Procedure: Create the OLAP Catalog Metadata
	Procedure: Create the Analytic Workspace Cube
	Procedure: Create SQL Access to the Analytic Workspace
	Column Structure of Dimension Views
	Sample Dimension View
	Grouping ID Column

	Column Structure of Fact Views

	10 Creating Materialized Views for the OLAP�API
	Choosing a Summary Management Strategy
	Summary Management with Analytic Workspaces
	Summary Management with Materialized Views
	About Materialized Views

	Materialized View Formats
	Grouping Sets
	Concatenated Rollup

	Materialized Views and OLAP Metadata
	Dimension Materialized Views
	Creating Dimension Materialized Views
	Number of Dimension Materialized Views

	Fact Materialized Views
	Number of Fact Materialized Views

	Choosing the Right Format for Materialized Views
	Query Performance
	Build Times
	Partial Materialization
	MV Size
	Lineage (Key)

	Part III� SQL Access Reference
	11 DBMS_AW
	Summary of DBMS_AW Subprograms
	EXECUTE Procedure
	GETLOG Function
	INTERP_SILENT Procedure
	INTERP Function
	INTERPCLOB Function
	OLAP_EXPRESSION Function
	PRINTLOG Procedure

	12 OLAP_TABLE
	Description
	Preliminary Steps
	Measures
	Dimensions
	Hierarchies
	Grouping IDs
	Parent Grouping IDs
	Family Relations
	Attributes

	Basic Steps
	Defining a Row
	Creating a Table
	Using OLAP_TABLE in a SELECT Statement

	OLAP_TABLE Reference
	Syntax
	Parameters
	AW_ATTACH Parameter
	Table_Name Parameter
	OLAP_Command Parameter
	Limit_Map Parameter
	MEASURE column FROM {measure | AW_EXPR expression}
	DIMENSION [column FROM] dimension...
	ROW2CELL column
	LOOP sparse_dimension
	PREDMLCMD olap_command
	POSTDMLCMD olap_command

	Examples
	Creating a View
	Creating Views of Embedded Total Dimensions
	Creating Views of Embedded Total Measures
	Creating Views in Rollup Form

	Part IV� OLAP Catalog Metadata API Reference
	13 Using the OLAP Catalog Metadata APIs
	OLAP Metadata Entities
	Constructing a Dimension
	Procedure: Construct an OLAP Dimension

	Constructing a Cube
	Procedure: Construct an OLAP Cube

	Mapping OLAP Metadata
	Mapping to Columns
	Joining Fact Tables with Dimension Tables

	Validating OLAP Metadata
	Structural Validation
	Mapping Validation

	Invoking the Procedures
	Security Checks and Error Conditions
	Case Requirements for Parameters
	Creating and Saving Metadata

	Viewing OLAP Catalog Metadata
	Example: Creating OLAP Metadata for a Dimension Table
	Example: Creating OLAP Metadata for a Fact Table

	14 Viewing OLAP Catalog Metadata
	Access to OLAP Catalog Views
	Views of the Dimensional Model
	Views of Mapping Information
	ALL_OLAP2_CUBES
	ALL_OLAP2_CUBE_MEASURES
	ALL_OLAP2_CUBE_DIM_USES
	ALL_OLAP2_CUBE_MEAS_DIM_USES
	ALL_OLAP2_DIMENSIONS
	ALL_OLAP2_DIM_HIERARCHIES
	ALL_OLAP2_DIM_LEVELS
	ALL_OLAP2_DIM_ATTRIBUTES
	ALL_OLAP2_DIM_LEVEL_ATTRIBUTES
	ALL_OLAP2_DIM_ATTR_USES
	ALL_OLAP2_DIM_HIER_LEVEL_USES
	ALL_OLAP2_CATALOGS
	ALL_OLAP2_CATALOG_ENTITY_USES
	ALL_OLAP2_ENTITY_DESC_USES
	ALL_OLAP2_CUBE_MEASURE_MAPS
	ALL_OLAP2_DIM_LEVEL_ATTR_MAPS
	ALL_OLAP2_LEVEL_KEY_COLUMN_USES
	ALL_OLAP2_JOIN_KEY_COLUMN_USES
	ALL_OLAP2_HIER_CUSTOM_SORT
	ALL_OLAP2_FACT_TABLE_GID
	ALL_OLAP2_FACT_LEVEL_USES

	15 CWM2_OLAP_AW_ACCESS
	When to Use the AW_ACCESS Package
	Prerequisites
	Process Overview
	Preparing the Analytic Workspace
	Specifying the Source and Target Objects
	Defining Dimension Views
	Defining Fact Views

	Example: Creating Views
	Example: Input Files for Mapping Variables to Views
	Example: Script for the Product View
	Example: Product View
	Summary of CWM2_OLAP_AW_ACCESS Subprograms
	CreateAWAccessStructures_FR Procedure
	CreateAWAccessStructures Procedure

	16 CWM2_OLAP_AW_CREATE
	Summary of CWM2_OLAP_AW_CREATE Subprograms
	AW_DIMENSION_CREATE Procedure
	AW_DIM_DEFINE_LOAD Procedure
	AW_DIM_FILTER_LOAD Procedure
	AW_DIMENSION_REFRESH Procedure
	AW_DIMENSION_CREATE_ACCESS Procedure
	AW_CUBE_CREATE Procedure
	AW_CUBE_DEFINE_LOAD Procedure
	AW_CUBE_FILTER_LOAD Procedure
	AW_CUBE_MEASURE_LOAD Procedure
	AW_CHOOSE_LEVEL_TUPLES Procedure
	AW_DEFINE_AGG_PLAN Procedure
	AW_CUBE_REFRESH Procedure
	AW_CUBE_CREATE_ACCESS Procedure

	17 CWM2_OLAP_CUBE
	Understanding Cubes
	Summary of CWM2_OLAP_CUBE Subprograms
	ADD_DIMENSION_TO_CUBE Procedure
	CREATE_CUBE Procedure
	DROP_CUBE Procedure
	LOCK_CUBE Procedure
	REMOVE_DIMENSION_FROM_CUBE Procedure
	SET_CUBE_NAME Procedure
	SET_DEFAULT_CUBE_DIM_CALC_HIER Procedure
	SET_DESCRIPTION Procedure
	SET_DISPLAY_NAME Procedure
	SET_MV_SUMMARY_CODE Procedure
	SET_SHORT_DESCRIPTION Procedure

	Example: Creating a Cube

	18 CWM2_OLAP_DIMENSION
	Understanding Dimensions
	Summary of CWM2_OLAP_DIMENSION Subprograms
	CREATE_DIMENSION Procedure
	DROP_DIMENSION Procedure
	LOCK_DIMENSION Procedure
	SET_DEFAULT_DISPLAY_HIERARCHY Procedure
	SET_DESCRIPTION Procedure
	SET_DIMENSION_NAME Procedure
	SET_DISPLAY_NAME Procedure
	SET_PLURAL_NAME Procedure
	SET_SHORT_DESCRIPTION Procedure

	Example: Creating a CWM2 Dimension

	19 CWM2_OLAP_DIMENSION_ATTRIBUTE
	Understanding Dimension Attributes
	Summary of CWM2_OLAP_DIMENSION_ATTRIBUTE Subprograms
	CREATE_DIMENSION_ATTRIBUTE Procedure
	DROP_DIMENSION_ATTRIBUTE Procedure
	LOCK_DIMENSION_ATTRIBUTE Procedure
	SET_DESCRIPTION Procedure
	SET_DIMENSION_ATTRIBUTE_NAME Procedure
	SET_DISPLAY_NAME Procedure
	SET_SHORT_DESCRIPTION Procedure

	Example: Creating a Dimension Attribute

	20 CWM2_OLAP_HIERARCHY
	Understanding Hierarchies
	Summary of CWM2_OLAP_HIERARCHY Subprograms
	CREATE_HIERARCHY Procedure
	DROP_HIERARCHY Procedure
	LOCK_HIERARCHY Procedure
	SET_DESCRIPTION Procedure
	SET_DISPLAY_NAME Procedure
	SET_HIERARCHY_NAME Procedure
	SET_SHORT_DESCRIPTION Procedure
	SET_SOLVED_CODE Procedure

	Example: Creating a Hierarchy

	21 CWM2_OLAP_LEVEL
	Understanding Levels
	Summary of CWM2_OLAP_LEVEL Subprograms
	ADD_LEVEL_TO_HIERARCHY Procedure
	CREATE_LEVEL Procedure
	DROP_LEVEL Procedure
	LOCK_LEVEL Procedure
	REMOVE_LEVEL_FROM_HIERARCHY Procedure
	SET_DESCRIPTION Procedure
	SET_DISPLAY_NAME Procedure
	SET_LEVEL_NAME Procedure
	SET_PLURAL_NAME Procedure
	SET_SHORT_DESCRIPTION Procedure

	Example: Creating a Level

	22 CWM2_OLAP_LEVEL_ATTRIBUTE
	Understanding Level Attributes
	Summary of CWM2_OLAP_LEVEL_ATTRIBUTE Subprograms
	CREATE_LEVEL_ATTRIBUTE
	DROP_LEVEL_ATTRIBUTE Procedure
	LOCK_LEVEL_ATTRIBUTE Procedure
	SET_DESCRIPTION Procedure
	SET_DISPLAY_NAME Procedure
	SET_LEVEL_ATTRIBUTE_NAME Procedure
	SET_SHORT_DESCRIPTION Procedure

	Example: Creating a Level Attribute

	23 CWM2_OLAP_MEASURE
	Understanding Measures
	Summary of CWM2_OLAP_MEASURE Subprograms
	CREATE_MEASURE Procedure
	DROP_MEASURE Procedure
	LOCK_MEASURE Procedure
	SET_DESCRIPTION Procedure
	SET_DISPLAY_NAME Procedure
	SET_MEASURE_NAME Procedure
	SET_SHORT_DESCRIPTION Procedure

	Example: Creating a Measure

	24 CWM2_OLAP_METADATA_REFRESH
	The OLAP API Metadata Reader Views
	Summary of CWM2_OLAP_METADATA_REFRESH Subprograms
	MR_REFRESH Procedure

	25 CWM2_OLAP_PC_TRANSFORM
	Prerequisites
	Parent-Child Dimensions
	Solved, Level-Based Dimensions
	Example: Creating a Solved, Level-Based Dimension Table
	Grouping ID Column
	Embedded Total Key Column
	Summary of CWM2_OLAP_PC_TRANSFORM Subprograms
	CREATE_SCRIPT Procedure

	26 CWM2_OLAP_TABLE_MAP
	Understanding OLAP Metadata Mapping
	Summary of CWM2_OLAP_TABLE_MAP Subprograms
	MAP_DIMTBL_HIERLEVELATTR Procedure
	MAP_DIMTBL_HIERLEVEL Procedure
	MAP_DIMTBL_HIERSORTKEY Procedure
	MAP_DIMTBL_LEVELATTR Procedure
	MAP_DIMTBL_LEVEL Procedure
	MAP_FACTTBL_LEVELKEY Procedure
	MAP_FACTTBL_MEASURE Procedure
	REMOVEMAP_DIMTBL_HIERLEVELATTR Procedure
	REMOVEMAP_DIMTBL_HIERLEVEL Procedure
	REMOVEMAP_DIMTBL_HIERSORTKEY Procedure
	REMOVEMAP_DIMTBL_LEVELATTR Procedure
	REMOVEMAP_DIMTBL_LEVEL Procedure
	REMOVEMAP_FACTTBL_LEVELKEY Procedure
	REMOVEMAP_FACTTBL_MEASURE Procedure

	Example: Mapping a Dimension
	Example: Mapping a Cube

	27 27 CWM2_OLAP_VALIDATE
	Summary of CWM2_OLAP_VALIDATE Subprograms
	VALIDATE_DIMENSION Procedure
	VALIDATE_CUBE Procedure

	28 CWM_CLASSIFY
	Understanding the OLAP Classification System
	Summary of CWM_CLASSIFY Subprograms
	ADD_CATALOG_ENTITY Procedure
	ADD_DESCRIPTOR_ENTITY_TYPE Procedure
	ADD_ENTITY_DESCRIPTOR_USE Procedure
	CREATE_CATALOG Function
	CREATE_DESCRIPTOR Function
	CREATE_DESCRIPTOR_TYPE Procedure
	DROP_CATALOG Procedure
	DROP_DESCRIPTOR Procedure
	DROP_DESCRIPTOR_TYPE Procedure
	LOCK_CATALOG Procedure
	REMOVE_CATALOG_ENTITY Procedure
	REMOVE_DESCRIPTOR_ENTITY_TYPE Procedure
	REMOVE_ENTITY_DESCRIPTOR_USE Procedure
	SET_CATALOG_DESCRIPTION Procedure
	SET_CATALOG_PARENT Procedure

	Example: Creating a Measure Folder

	Part V� Part V� OLAP�API Materialized View Reference
	29 Creating Dimension Materialized Views
	Creating Materialized Views for Dimensions
	Statistics and Bitmap Indexes
	Statistics
	Bitmap Indexes
	The CREATE Statement for a Dimension Materialized View

	Sample Script for the TIMES_DIM Dimension
	Table Structure of Sample TIMES_DIM Dimension Materialized View

	30 Creating Fact Materialized Views With DBMS_ODM
	Using the DBMS_ODM Package
	Procedure: Create and Run Scripts to Generate Grouping Set Materialized Views

	Partitioning, Statistics, and Indexes
	Partitioning
	Statistics
	Bitmap Indexes

	Sample Script for the COST Cube
	Summary of DBMS_ODM Subprograms
	CREATEDIMLEVTUPLE Procedure
	CREATECUBELEVELTUPLE Procedure
	CREATEFACTMV_GS Procedure
	CREATEDIMMV_GS Procedure

	31 Creating Fact Materialized Views With OLAP Summary Advisor
	Using the OLAP Summary Advisor Wizard
	Procedure: Run the OLAP Summary Advisor

	Partitioning, Statistics, and Indexes
	Partitioning
	Statistics
	Bitmap Indexes

	The MV CREATE Statement With Concatenated Rollup
	Sample Script for the COST Cube

	A Upgrading From Express Server
	Administration
	Authentication of Users
	Management Tools

	Data Transfer
	Localization
	Applications Support
	Programming Environment
	Communications
	Metadata

	Programming Language Changes
	New Commands
	Obsolete Commands
	UPDATE and COMMIT

	How to Upgrade an Express Database

	Index

